当前位置:
X-MOL 学术
›
Soft Robot.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Rolling Soft Robot Driven by Local Snap-Through Buckling.
Soft Robotics ( IF 6.4 ) Pub Date : 2024-12-12 , DOI: 10.1089/soro.2024.0115 Pengfei Yang,Yuqing Mao,Hong Liu,Luyu Gao,Feng Huang,Fei Dang
Soft Robotics ( IF 6.4 ) Pub Date : 2024-12-12 , DOI: 10.1089/soro.2024.0115 Pengfei Yang,Yuqing Mao,Hong Liu,Luyu Gao,Feng Huang,Fei Dang
Previous rolling soft robots have difficulty in balancing the locomotion speed with energy efficiency and have limited terrain adaptability. This work proposes a rolling soft robot driven by local snap-through buckling, which employs the fast response and configuration maintenance of the bistable structure to enhance the locomotion performance of the soft robot. A theory based on bifurcation and the energy principle is established to analyze the rolling mechanism. The influences of loading position and geometric parameters on the rolling performance are investigated and verified experimentally. The soft robot shows good locomotion speed (0.95 body length per second, BL/s) and small energy loss due to the almost unchanged configuration during the rolling process. The soft robot adapts to complex terrains, including a step with the height of 15 mm, a slope with the angle of 18.36°, and a broken bridge with the gap length of 90 mm (0.443 BL). The proposed rolling soft robot not only has good application prospects in land exploration missions and medical applications but also provides inspiration for the development of rolling soft robots.
中文翻译:
由局部突弹跳变屈曲驱动的滚动软体机器人。
以前的滚动软机器人难以平衡运动速度和能源效率,并且地形适应性有限。本工作提出了一种由局部突弹跳变屈曲驱动的滚动软体机器人,它利用双稳态结构的快速响应和配置维护来增强软体机器人的运动性能。建立了基于分岔和能量原理的理论,分析了滚动机理。通过实验研究和验证了加载位置和几何参数对轧制性能的影响。由于在轧制过程中的配置几乎不变,软体机器人表现出良好的运动速度(每秒 0.95 体长,BL/s)和较小的能量损失。软体机器人适应复杂的地形,包括高度为 15 mm 的台阶、角度为 18.36° 的斜坡和间隙长度为 90 mm (0.443 BL) 的断桥。所提出的滚动软机器人不仅在陆地勘探任务和医疗应用中具有良好的应用前景,而且为滚动软机器人的发展提供了灵感。
更新日期:2024-12-12
中文翻译:
由局部突弹跳变屈曲驱动的滚动软体机器人。
以前的滚动软机器人难以平衡运动速度和能源效率,并且地形适应性有限。本工作提出了一种由局部突弹跳变屈曲驱动的滚动软体机器人,它利用双稳态结构的快速响应和配置维护来增强软体机器人的运动性能。建立了基于分岔和能量原理的理论,分析了滚动机理。通过实验研究和验证了加载位置和几何参数对轧制性能的影响。由于在轧制过程中的配置几乎不变,软体机器人表现出良好的运动速度(每秒 0.95 体长,BL/s)和较小的能量损失。软体机器人适应复杂的地形,包括高度为 15 mm 的台阶、角度为 18.36° 的斜坡和间隙长度为 90 mm (0.443 BL) 的断桥。所提出的滚动软机器人不仅在陆地勘探任务和医疗应用中具有良好的应用前景,而且为滚动软机器人的发展提供了灵感。