当前位置:
X-MOL 学术
›
Psychological Review
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Illusory traits: Wrong but sometimes useful.
Psychological Review ( IF 5.1 ) Pub Date : 2024-12-12 , DOI: 10.1037/rev0000522 Drew H Bailey,Nicolas Hübner,Steffen Zitzmann,Martin Hecht,Kou Murayama
Psychological Review ( IF 5.1 ) Pub Date : 2024-12-12 , DOI: 10.1037/rev0000522 Drew H Bailey,Nicolas Hübner,Steffen Zitzmann,Martin Hecht,Kou Murayama
Psychological measures frequently show trait-like properties, and the ontological status of stable psychological traits has been discussed for decades. We argue that these properties can emerge from causal dynamics of time-varying processes, which are omitted from the analysis model, potentially leading to the estimation of traits that are, at least in part, illusory. Theories positing the importance of a large set of dynamic psychological causes across development are consistent with the existence of illusory traits. We show via simulation that even a linear system with many processes can generate a covariance matrix with trait-like properties. We then attempt to examine how illusory traits affect our conclusions drawn from a common statistical model, which assumes stable traits to analyze longitudinal panel data-a random-intercept cross-lagged panel model (RI-CLPM). We find that the RI-CLPM sometimes falsely detects the existence of traits in the presence of omitted processes, even when the data-generating model does not include any traits. However, in this scenario, the RI-CLPM estimates less causally biased autoregressive and cross-lagged effects than an analysis model, which does not assume traits (i.e., the cross-lagged panel model). The results indicate that the detection of trait variance should not be inferred as strong evidence for the existence of time-invariant trait causes. On the other hand, even when traits are illusory, statistical models assuming stable traits may sometimes be useful for causal inference. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
中文翻译:
虚幻的特质:错误但有时有用。
心理测量经常显示出类似特质的特性,稳定心理特质的本体论地位已经讨论了几十年。我们认为,这些属性可以从时变过程的因果动力学中出现,而分析模型中省略了这些因果关系,这可能导致对特征的估计至少部分是虚幻的。假设大量动态心理原因在发展过程中的重要性的理论与虚幻特征的存在是一致的。我们通过模拟表明,即使是具有许多过程的线性系统也可以生成具有类似特征属性的协方差矩阵。然后,我们尝试检查虚幻特征如何影响我们从通用统计模型中得出的结论,该模型假设稳定的特征来分析纵向面板数据 - 随机截距交叉滞后面板模型 (RI-CLPM)。我们发现,即使数据生成模型不包含任何特征,RI-CLPM 有时也会在存在省略的进程的情况下错误地检测到特征的存在。然而,在这种情况下,RI-CLPM 估计的因果偏差自回归和交叉滞后效应比不假设性状的分析模型(即交叉滞后面板模型)要少。结果表明,不应将性状方差的检测推断为存在时间不变性状原因的有力证据。另一方面,即使特征是虚幻的,假设稳定特征的统计模型有时也可能对因果推理有用。(PsycInfo 数据库记录 (c) 2024 APA,保留所有权利)。
更新日期:2024-12-12
中文翻译:
虚幻的特质:错误但有时有用。
心理测量经常显示出类似特质的特性,稳定心理特质的本体论地位已经讨论了几十年。我们认为,这些属性可以从时变过程的因果动力学中出现,而分析模型中省略了这些因果关系,这可能导致对特征的估计至少部分是虚幻的。假设大量动态心理原因在发展过程中的重要性的理论与虚幻特征的存在是一致的。我们通过模拟表明,即使是具有许多过程的线性系统也可以生成具有类似特征属性的协方差矩阵。然后,我们尝试检查虚幻特征如何影响我们从通用统计模型中得出的结论,该模型假设稳定的特征来分析纵向面板数据 - 随机截距交叉滞后面板模型 (RI-CLPM)。我们发现,即使数据生成模型不包含任何特征,RI-CLPM 有时也会在存在省略的进程的情况下错误地检测到特征的存在。然而,在这种情况下,RI-CLPM 估计的因果偏差自回归和交叉滞后效应比不假设性状的分析模型(即交叉滞后面板模型)要少。结果表明,不应将性状方差的检测推断为存在时间不变性状原因的有力证据。另一方面,即使特征是虚幻的,假设稳定特征的统计模型有时也可能对因果推理有用。(PsycInfo 数据库记录 (c) 2024 APA,保留所有权利)。