当前位置:
X-MOL 学术
›
Psychological Methods
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Power analysis to detect misfit in SEMs with many items: Resolving unrecognized problems, relating old and new approaches, and "matching" power analysis approach to data analysis approach.
Psychological Methods ( IF 7.6 ) Pub Date : 2024-12-12 , DOI: 10.1037/met0000684 Amy Liang,Sonya K Sterba
Psychological Methods ( IF 7.6 ) Pub Date : 2024-12-12 , DOI: 10.1037/met0000684 Amy Liang,Sonya K Sterba
It is unappreciated that there are four different approaches to power analysis for detecting misspecification by testing overall fit of structural equation models (SEMs) and, moreover, that common approaches can yield radically diverging results for SEMs with many items (high p). Here we newly relate these four approaches. Analytical power analysis methods using theoretical null and theoretical alternative distributions (Approach 1) have a long history, are widespread, and are often contrasted with "the" Monte Carlo method-which is an oversimplification. Actually, three Monte Carlo methods can be distinguished; all use an empirical alternative distribution but differ regarding whether the null distribution is theoretical (Approach 2), empirical (Approach 3), or-as we newly propose and demonstrate the need for-adjusted empirical (Approach 4). Because these four approaches can yield radically diverging power results under high p (as demonstrated here), researchers need to "match" their a priori SEM power analysis approach to their later SEM data analysis approach for testing overall fit, once data are collected. Disturbingly, the most common power analysis approach for a global test-of-fit is mismatched with the most common data analysis approach for a global test-of-fit in SEM. Because of this mismatch, researchers' anticipated versus actual/obtained power can differ substantially. We explain how/why to "match" across power-analysis and data-analysis phases of a study and provide software to facilitate doing so. As extensions, we explain how to relate and implement all four approaches to power analysis (a) for testing overall fit using χ² versus root-mean-square error of approximation and (b) for testing overall fit versus testing a target parameter/effect. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
中文翻译:
功效分析以检测具有许多项目的 SEM 中的失配:解决未识别的问题,将新旧方法联系起来,以及将功效分析方法与数据分析方法“匹配”。
人们没有意识到,有四种不同的功效分析方法可以通过测试结构方程模型 (SEM) 的整体拟合来检测规格错误,此外,对于具有许多项目的 SEM,通用方法可能会产生截然不同的结果(高 p)。在这里,我们新地介绍了这四种方法。使用理论零分布和理论替代分布(方法 1)的分析幂分析方法具有悠久的历史,分布广泛,并且经常与“蒙特卡洛方法”形成对比,后者过于简单化。实际上,可以区分三种蒙特卡洛方法;都使用经验替代分布,但在零分布是理论分布(方法 2)、经验分布(方法 3)还是我们新提出并证明需要调整的经验分布(方法 4)方面存在分歧。由于这四种方法在高 p 下会产生完全不同的功效结果(如此处所示),因此研究人员需要在收集数据后,将他们的先验 SEM 功效分析方法与后来的 SEM 数据分析方法“匹配”,以测试整体拟合度。令人不安的是,全局拟合检验的最常见功效分析方法与 SEM 中全局拟合检验的最常见数据分析方法不匹配。由于这种不匹配,研究人员的预期功率与实际/获得的能力可能会有很大差异。我们解释了如何/为什么在研究的功效分析和数据分析阶段进行“匹配”,并提供软件来促进这样做。作为扩展,我们解释了如何将所有四种方法与功效分析联系起来并实施 (a) 使用 χ² 与近似均方根误差测试整体拟合,以及 (b) 测试整体拟合与测试目标参数/效应。 (PsycInfo 数据库记录 (c) 2024 APA,保留所有权利)。
更新日期:2024-12-12
中文翻译:
功效分析以检测具有许多项目的 SEM 中的失配:解决未识别的问题,将新旧方法联系起来,以及将功效分析方法与数据分析方法“匹配”。
人们没有意识到,有四种不同的功效分析方法可以通过测试结构方程模型 (SEM) 的整体拟合来检测规格错误,此外,对于具有许多项目的 SEM,通用方法可能会产生截然不同的结果(高 p)。在这里,我们新地介绍了这四种方法。使用理论零分布和理论替代分布(方法 1)的分析幂分析方法具有悠久的历史,分布广泛,并且经常与“蒙特卡洛方法”形成对比,后者过于简单化。实际上,可以区分三种蒙特卡洛方法;都使用经验替代分布,但在零分布是理论分布(方法 2)、经验分布(方法 3)还是我们新提出并证明需要调整的经验分布(方法 4)方面存在分歧。由于这四种方法在高 p 下会产生完全不同的功效结果(如此处所示),因此研究人员需要在收集数据后,将他们的先验 SEM 功效分析方法与后来的 SEM 数据分析方法“匹配”,以测试整体拟合度。令人不安的是,全局拟合检验的最常见功效分析方法与 SEM 中全局拟合检验的最常见数据分析方法不匹配。由于这种不匹配,研究人员的预期功率与实际/获得的能力可能会有很大差异。我们解释了如何/为什么在研究的功效分析和数据分析阶段进行“匹配”,并提供软件来促进这样做。作为扩展,我们解释了如何将所有四种方法与功效分析联系起来并实施 (a) 使用 χ² 与近似均方根误差测试整体拟合,以及 (b) 测试整体拟合与测试目标参数/效应。 (PsycInfo 数据库记录 (c) 2024 APA,保留所有权利)。