当前位置:
X-MOL 学术
›
Energy Convers. Manag.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Flow-driven directional freeze-casting of graphene aerogels on tubular components for enhanced thermal energy management
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2024-12-12 , DOI: 10.1016/j.enconman.2024.119389 Subhani Shaik, Vandana Kumari Jha, Ganghyeon Bae, Duckjong Kim
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2024-12-12 , DOI: 10.1016/j.enconman.2024.119389 Subhani Shaik, Vandana Kumari Jha, Ganghyeon Bae, Duckjong Kim
In the rapidly advancing field of energy storage technologies, achieving efficiency and sustainability has become paramount, with adsorption playing a crucial role. This adsorption process benefits significantly from aerogel-based structures due to their inherent porosity and customizable architectures, which facilitate exceptional heat- and mass-transfer capabilities. However, despite extensive research on optimizing aerogel microstructures for enhanced adsorption, integrating these materials into practical energy storage systems remains challenging. To overcome this, we present a flow-driven directional freeze-casting technique that integrates aerogels with radially oriented pore networks onto tubular components, forming well-aligned, fin-like structures. This innovative method increases the practical applicability of aerogels in real-world energy storage systems. By adjusting process conditions, we achieve a further improved alignment similar to longitudinal finned structures, significantly enhancing mass transfer. This improved alignment results in ∼ 35 % reductions in both adsorption and desorption times compared to the lowest alignment sample. Based on the measured adsorption characteristics, the performance estimation for thermal energy storage systems integrating the tailored aerogel structure showed a 61 % increase in power density compared to the highest recently reported value for sorption-based thermal battery. When applied to adsorption heat pump systems, the estimated specific cooling power improved by 68–98 % compared to other reported adsorbent composites. These results highlight the potential of our novel aerogel integration technique to enhance thermal management solutions and significantly advance adsorption-based energy systems.
中文翻译:
在管状组件上对石墨烯气凝胶进行流动驱动定向冷冻浇铸,以增强热能管理
在快速发展的储能技术领域,实现效率和可持续性已成为重中之重,其中吸附起着至关重要的作用。这种吸附过程从基于气凝胶的结构中受益匪浅,因为它们具有固有的孔隙率和可定制的结构,有助于实现卓越的传热和传质能力。然而,尽管对优化气凝胶微观结构以增强吸附进行了大量研究,但将这些材料集成到实际的储能系统中仍然具有挑战性。为了克服这个问题,我们提出了一种流动驱动的定向冷冻铸造技术,该技术将具有径向定向孔网络的气凝胶集成到管状组件上,形成排列良好的鳍状结构。这种创新方法提高了气凝胶在实际储能系统中的实际适用性。通过调整工艺条件,我们实现了类似于纵向翅片结构的进一步改进的对准,从而显著增强了传质。与最低的对准样品相比,这种改进的对准导致吸附和解吸时间减少了 ∼ 35%。根据测得的吸附特性,集成定制气凝胶结构的热能存储系统的性能估计显示,与最近报道的基于吸附的热电池的最高值相比,功率密度增加了 61%。当应用于吸附式热泵系统时,与其他报道的吸附剂复合材料相比,估计的比冷却功率提高了 68-98%。这些结果凸显了我们新型气凝胶集成技术在增强热管理解决方案和显著推进基于吸附的能源系统方面的潜力。
更新日期:2024-12-12
中文翻译:
在管状组件上对石墨烯气凝胶进行流动驱动定向冷冻浇铸,以增强热能管理
在快速发展的储能技术领域,实现效率和可持续性已成为重中之重,其中吸附起着至关重要的作用。这种吸附过程从基于气凝胶的结构中受益匪浅,因为它们具有固有的孔隙率和可定制的结构,有助于实现卓越的传热和传质能力。然而,尽管对优化气凝胶微观结构以增强吸附进行了大量研究,但将这些材料集成到实际的储能系统中仍然具有挑战性。为了克服这个问题,我们提出了一种流动驱动的定向冷冻铸造技术,该技术将具有径向定向孔网络的气凝胶集成到管状组件上,形成排列良好的鳍状结构。这种创新方法提高了气凝胶在实际储能系统中的实际适用性。通过调整工艺条件,我们实现了类似于纵向翅片结构的进一步改进的对准,从而显著增强了传质。与最低的对准样品相比,这种改进的对准导致吸附和解吸时间减少了 ∼ 35%。根据测得的吸附特性,集成定制气凝胶结构的热能存储系统的性能估计显示,与最近报道的基于吸附的热电池的最高值相比,功率密度增加了 61%。当应用于吸附式热泵系统时,与其他报道的吸附剂复合材料相比,估计的比冷却功率提高了 68-98%。这些结果凸显了我们新型气凝胶集成技术在增强热管理解决方案和显著推进基于吸附的能源系统方面的潜力。