当前位置:
X-MOL 学术
›
Energy Convers. Manag.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Experimental evaluation of pre-ignition and multi-objective optimal controlling of turbocharged direct injection hydrogen engines under high-load and high-speed conditions using Taguchi and TOPSIS methods
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2024-12-11 , DOI: 10.1016/j.enconman.2024.119378 Shi-wei Zhang, Bai-gang Sun, Qing-he Luo, Ling-zhi Bao
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2024-12-11 , DOI: 10.1016/j.enconman.2024.119378 Shi-wei Zhang, Bai-gang Sun, Qing-he Luo, Ling-zhi Bao
Hydrogen demonstrates potential as a renewable energy source for internal combustion engines due to its carbon-free nature and high efficiency. However, the risk of abnormal combustion arises in downsized, turbocharged hydrogen internal combustion engines (H2 ICE), particularly manifesting as low-speed pre-ignition and super knock at high loads and high speeds. In this paper, the characteristics of slight and distinct pre-ignition are identified and analyzed by experiments in a 1.5 L turbocharged direct injection H2 ICE. Taguchi method and analysis of variance are employed to show that frequent pre-ignition begins to occur when the load of brake mean effective pressure (BMEP) of 1.0 MPa at 2500 rpm. Intense pre-ignition tends to happen with a BMEP exceeding 1.4 MPa at 2500 rpm and 5500 rpm. Specific control strategies are also explored to suppress pre-ignitions and enhance engine performance, considering brake thermal efficiency (BTE), coefficient of variation (CoV IMEP ), maximum amplitude of pressure (MAPO), and nitrogen oxides (NOx) emissions in a synergistic method. Additionally, six evaluation indices from the Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) are ranked to find the multi-objective optimal controlling at different working conditions. The results indicate that increasing λ and delaying ignition timing can reduce 88.7 % pre-ignition numbers and enhance 1.4 % BTE when the BMEP = 1.0 MPa at 2500 rpm. Optimizing split injection (SEOI = −40°CA, SIMP = 35 %) suppress the pre-ignition frequent by 94.4 % and the pre-ignition intense by 81.7 %, while the maximum BTE is improved to 42.02 % when the BMEP = 1.4 MPa at 2500 rpm. In terms of high-speed of 5500 rpm working conditions, optimal variable valve timing (VVT: IVO = 20°CA, EVC = −20°CA) strategies are applied to reach the peak power of 120 kW with no abnormal combustion. The proposed method and controlling strategy of this paper are valuable to developing a large-power H2 ICE with stable combustion and high efficiency when managing and conversing hydrogen energy.
中文翻译:
使用田口和 TOPSIS 方法对涡轮增压直喷氢发动机在高负荷和高速条件下的早燃和多目标优化控制的实验评价
氢因其无碳特性和高效率而显示出作为内燃机可再生能源的潜力。然而,小型化涡轮增压氢内燃机 (H2ICE) 存在异常燃烧的风险,特别是表现为低速提前点火和高负载和高速时的超级爆震。本文通过在 1.5 L 涡轮增压直喷 H2ICE 中进行实验,识别和分析了轻微而明显的早燃特性。采用田口法和方差分析表明,当制动平均有效压力 (BMEP) 负载在 2500 rpm 时为 1.0 MPa 时,开始频繁的早燃。在 1.4 rpm 和 2500 rpm 时 BMEP 超过 5500 MPa 时往往会发生强烈的提前点火。还探索了具体的控制策略,以抑制提前点火并提高发动机性能,以协同方法考虑制动热效率 (BTE)、变异系数 (CoVIMEP)、最大压力幅度 (MAPO) 和氮氧化物 (NOx) 排放。此外,对理想解相似性排序技术 (TOPSIS) 的 6 个评价指标进行排序,以找到不同工况下的多目标最优控制。结果表明,当 BMEP = 1.0 MPa 时,在 2500 rpm 时,增加 λ 和延迟点火正时可以减少 88.7% 的提前点火次数,并提高 1.4% 的 BTE。优化分流喷射(SEOI = −40°CA,SIMP = 35 %)将提前点火频率抑制了 94.4%,将提前点火强度抑制了 81.7%,而当 BMEP = 1.4 MPa 时,最大 BTE 提高到 42.02 %,转速为 2500 rpm。 在 5500 rpm 的高速工况方面,采用最佳可变气门正时 (VVT: IVO = 20°CA, EVC = −20°CA) 策略,以达到 120 kW 的峰值功率,且无异常燃烧。本文提出的方法和控制策略对于开发燃烧稳定、氢能管理和转换效率高的大功率 H2ICE 具有重要价值。
更新日期:2024-12-11
中文翻译:
使用田口和 TOPSIS 方法对涡轮增压直喷氢发动机在高负荷和高速条件下的早燃和多目标优化控制的实验评价
氢因其无碳特性和高效率而显示出作为内燃机可再生能源的潜力。然而,小型化涡轮增压氢内燃机 (H2ICE) 存在异常燃烧的风险,特别是表现为低速提前点火和高负载和高速时的超级爆震。本文通过在 1.5 L 涡轮增压直喷 H2ICE 中进行实验,识别和分析了轻微而明显的早燃特性。采用田口法和方差分析表明,当制动平均有效压力 (BMEP) 负载在 2500 rpm 时为 1.0 MPa 时,开始频繁的早燃。在 1.4 rpm 和 2500 rpm 时 BMEP 超过 5500 MPa 时往往会发生强烈的提前点火。还探索了具体的控制策略,以抑制提前点火并提高发动机性能,以协同方法考虑制动热效率 (BTE)、变异系数 (CoVIMEP)、最大压力幅度 (MAPO) 和氮氧化物 (NOx) 排放。此外,对理想解相似性排序技术 (TOPSIS) 的 6 个评价指标进行排序,以找到不同工况下的多目标最优控制。结果表明,当 BMEP = 1.0 MPa 时,在 2500 rpm 时,增加 λ 和延迟点火正时可以减少 88.7% 的提前点火次数,并提高 1.4% 的 BTE。优化分流喷射(SEOI = −40°CA,SIMP = 35 %)将提前点火频率抑制了 94.4%,将提前点火强度抑制了 81.7%,而当 BMEP = 1.4 MPa 时,最大 BTE 提高到 42.02 %,转速为 2500 rpm。 在 5500 rpm 的高速工况方面,采用最佳可变气门正时 (VVT: IVO = 20°CA, EVC = −20°CA) 策略,以达到 120 kW 的峰值功率,且无异常燃烧。本文提出的方法和控制策略对于开发燃烧稳定、氢能管理和转换效率高的大功率 H2ICE 具有重要价值。