当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigating the impact of a fuel cell system air supply control on the performance of an energy management strategy
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2024-12-12 , DOI: 10.1016/j.enconman.2024.119374
Ali Moslehi, Mohsen Kandidayeni, Marie Hébert, Sousso Kelouwani

This study presents a comprehensive approach to optimizing the performance of a hybrid fuel cell (FC) battery powertrain through the development of a systemic energy management strategy (EMS). The strategy is designed with two levels of management and control, aiming to enhance the efficiency, reduce hydrogen consumption, and improve the safety of the powertrain system. The first level involves an optimization-based EMS focused on efficient power distribution between the FC and the battery pack. Key to this approach is the consideration of air supply system constraints, which include maintaining safe compressor operation by avoiding the surge zone in the compressor map and ensuring the optimal range for the Oxygen Excess Ratio (OER). By addressing these constraints, the strategy not only improves the stability of the compressor but also minimizes hydrogen consumption. The second level of the strategy is on control, utilizing an adaptive PID controller to dynamically track the imposed optimal OER reference. This control layer adjusts the compressor motor voltage to achieve OER tracking, further optimizing the performance of the powertrain under varying operational conditions. The combination of these two levels results in balanced power distribution, reduced hydrogen consumption, and enhanced operational safety, particularly across different altitudes and power demands. To validate the effectiveness of the proposed strategy, two case studies are conducted: one involving a vehicle driving cycle and another using a standard aircraft mission profile. For the vehicle case, the system is evaluated at sea level, 1000 m, and 2000 m. The findings indicate that the optimal OER reduced hydrogen consumption by 2.6 % to 5.1 % at sea level, 2.4 % to 4.2 % at 1000 m, and 1.6 % to 3.0 % at 2000 m compared to constant OERs of 2.0 and 2.5. In the aircraft case, where both altitude and power demand vary over time, the results showed that the optimal OER reduced hydrogen consumption by 1.6 % compared to a constant OER of 2.0 and by 3.1 % compared to a constant OER of 2.5. These findings reveal the benefits of incorporating a systemic approach to EMS that not only enhances fuel efficiency but also ensures operational stability. At high altitudes, adhering to the optimal OER becomes crucial, as it is the only viable option to maintain efficient operation without the need to oversize the compressor, which would otherwise compromise system performance.

中文翻译:


调查燃料电池系统供气控制对能源管理策略绩效的影响



本研究提出了一种通过开发系统能源管理策略 (EMS) 来优化混合动力燃料电池 (FC) 电池动力总成性能的综合方法。该战略设计有管理和控制两个层次,旨在提高效率、减少氢消耗和提高动力总成系统的安全性。第一个级别涉及基于优化的 EMS,专注于 FC 和电池组之间的高效配电。这种方法的关键是考虑供气系统的约束,其中包括通过避免压缩机图中的喘振区和确保氧气过剩比 (OER) 的最佳范围来保持压缩机的安全运行。通过解决这些限制,该策略不仅提高了压缩机的稳定性,还最大限度地减少了氢气消耗。该策略的第二级是控制,利用自适应 PID 控制器动态跟踪施加的最佳 OER 参考。该控制层调整压缩机电机电压以实现 OER 跟踪,进一步优化动力总成在不同运行条件下的性能。这两个水平的结合可实现平衡的配电、减少氢气消耗并提高操作安全性,尤其是在不同的海拔和电力需求下。为了验证所提出的策略的有效性,进行了两个案例研究:一个涉及车辆驾驶周期,另一个使用标准飞机任务配置文件。对于车辆情况,该系统在海平面、1000 m 和 2000 m 进行评估。研究结果表明,最佳 OER 在海平面将氢消耗量降低了 2.6% 至 5.1%,在 1000 m 处减少了 2.4% 至 4.2%,在 1000 m 处减少了 1.6% 至 3%。2000 m 处为 0%,而恒定 OER 为 2.0 和 2.5。在飞机的情况下,高度和电力需求都随时间变化,结果表明,与恒定 OER 2.0 相比,最佳 OER 减少了 1.6%,与恒定 OER 2.5 相比减少了 3.1%。这些发现揭示了在 EMS 中采用系统方法的好处,该方法不仅可以提高燃油效率,还可以确保运营稳定性。在高海拔地区,遵守最佳 OER 变得至关重要,因为这是保持高效运行的唯一可行选择,而无需加大压缩机,否则会影响系统性能。
更新日期:2024-12-12
down
wechat
bug