当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multi-objective optimization and posteriori multi-criteria decision making on an integrative solid oxide fuel cell cooling, heating and power system with semi-empirical model-driven co-simulation
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2024-12-09 , DOI: 10.1016/j.enconman.2024.119371
Bin Gao, Yuekuan Zhou

An integrative solid oxide fuel cell combined cooling, heating and power system in green buildings with hydrogen energy of byproduct water enables carbon neutrality transformation. However, underlying mechanisms on capacity sizing of combined cooling, heating and power system devices and its impacts on system techno-economy have not been figured out especially considering dynamic degradation and efficiency of associated devices. In this study, a multi-software optimization platform is established by MATLAB-TRNSYS co-simulation for sizing parametrical analysis, with well balance of modelling complexity and computational efficiency. A self-sufficient combined cooling, heating and power system is modelled integrating with a semi-empirical surrogate model of solid oxide fuel cell to interact with other balance of plant types efficiently. Total energy efficiency and annual total cost are optimized through parametrical analysis on device size of each component (battery, electrolyzer and solid oxide fuel cell) and analysis of variance for contribution ratio quantification. Results indicate that, the size increase in electrolyzer and solid oxide fuel cell will improve system total energy efficiency by 13.635 % and 2.194 %, but promote annual total cost by 4.042 × 104 $ and 2.389 × 103 $, respectively. Besides, sensitivity analysis indicates that the electrolyzer size prioritizes other design parameters in techno-economic performance. Optimal sizes of battery, electrolyzer and solid oxide fuel cell are in cell number range of 333 – 403, 17 – 20, and 26 – 30, respectively, with corresponding optimal total energy efficiency and annual total cost at 70.861 % – 72.147 % and 6.723 × 104 $ – 7.325 × 104 $, respectively. The research results can provide guidance on hydrogen-based cooling, heating and power system design and operation with techno-economic feasibility for low-carbon district energy transition.

中文翻译:


基于半经验模型驱动的协同仿真,对固体氧化物燃料电池冷却、加热和动力系统进行多目标优化和后验多标准决策



利用副产水氢能的绿色建筑中一体化固体氧化物燃料电池冷、热、电联供系统,实现碳中和转型。然而,冷却、加热和电力系统组合装置容量大小的潜在机制及其对系统技术经济的影响尚未弄清楚,特别是考虑到相关装置的动态退化和效率。本研究通过 MATLAB-TRNSYS 协同仿真建立了一个多软件优化平台,用于尺寸参数化分析,在建模复杂性和计算效率之间取得了良好的平衡。将自给自足的冷、热、电联合系统与固体氧化物燃料电池的半经验替代模型相结合进行建模,以有效地与其他工厂类型相互作用。通过对每个组件(电池、电解槽和固体氧化物燃料电池)的器件尺寸进行参数分析和贡献比量化的方差分析,优化总能源效率和年度总成本。结果表明,电解槽和固体氧化物燃料电池的尺寸增加将使系统总能效提高 13.635 % 和 2.194 %,但年总成本分别增加 4.042 × 104 美元和 2.389 × 103 美元。此外,敏感性分析表明,电解槽尺寸在技术经济性能方面优先考虑其他设计参数。电池、电解槽和固体氧化物燃料电池的最佳尺寸分别为 333 – 403、17 – 20 和 26 – 30,相应的最佳总能源效率和年总成本分别为 70.861 % – 72.147 % 和 6.723 × 104 美元 – 7.325 × 104 美元。 研究结果可为氢基制冷、供热和电力系统的设计和运营提供指导,为低碳区域能源转型提供技术经济可行性。
更新日期:2024-12-09
down
wechat
bug