当前位置:
X-MOL 学术
›
Energy Convers. Manag.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Non-imaging concentrator coupled with all-glass solar superconducting heat pipe and its photothermal conversion characterization studies
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2024-12-10 , DOI: 10.1016/j.enconman.2024.119367 Chi Zhang, Xin Zhang, Jiancheng Zhu, Fei Chen
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2024-12-10 , DOI: 10.1016/j.enconman.2024.119367 Chi Zhang, Xin Zhang, Jiancheng Zhu, Fei Chen
A compound parabolic concentrator (CPC) combined with a vacuum heat pipe forms a solar collector system capable of efficiently converting solar radiation into medium-temperature heat energy. However, conventional all-glass solar vacuum tubes are characterized by high-temperature heat energy retention, significant resistance to heat energy output, and limited frost resistance during colder seasons. Furthermore, there is a relative scarcity of research on the synergistic effects of CPC-coupled heat pipes, with most numerical simulations of heat pipes being two-dimensional in nature. This study presents a novel solar collector system developed by integrating CPC with all-glass superconducting heat pipes (SHP), and it investigates the synergy between CPC and SHP. Both experimental studies and three-dimensional numerical simulations are employed to examine the impact of the SHP inclination angle on collector performance. Subsequently, the fundamental principles of two-phase heat transfer and the light-to-heat conversion performances of SHP are analysed. The findings indicate that the numerical simulations of the collector performance of the all-glass superconducting heat pipe align closely with experimental measurements, with a maximum relative error of 6.71 % in the condensing section temperature. Additionally, the results demonstrate that the integration of SHP with CPC significantly enhances collector temperature, achieving a condensing section temperature of 383.6 K, with an optimal working inclination angle of 50°.
中文翻译:
非成像聚光器耦合全玻璃太阳能超导热管及其光热转换表征研究
复合抛物面聚光器 (CPC) 与真空热管相结合,形成太阳能集热器系统,能够有效地将太阳辐射转化为中温热能。然而,传统的全玻璃太阳能真空管的特点是高温热能保留、对热能输出的显着抵抗力以及在寒冷季节的抗冻性有限。此外,关于 CPC 耦合热管协同效应的研究相对稀少,大多数热管的数值模拟本质上是二维的。本研究提出了一种通过将 CPC 与全玻璃超导热热管 (SHP) 集成而开发的新型太阳能集热器系统,并研究了 CPC 和 SHP 之间的协同作用。采用实验研究和三维数值模拟来检验 SHP 倾角对集热器性能的影响。随后,分析了两相传热的基本原理和 SHP 的光-热转换性能。结果表明,全玻璃超导热管集热器性能的数值模拟与实验测量结果密切相关,冷凝段温度的最大相对误差为 6.71 %。此外,结果表明,SHP 与 CPC 的集成显著提高了集热器温度,实现了 383.6 K 的冷凝段温度,最佳工作倾角为 50°。
更新日期:2024-12-10
中文翻译:
非成像聚光器耦合全玻璃太阳能超导热管及其光热转换表征研究
复合抛物面聚光器 (CPC) 与真空热管相结合,形成太阳能集热器系统,能够有效地将太阳辐射转化为中温热能。然而,传统的全玻璃太阳能真空管的特点是高温热能保留、对热能输出的显着抵抗力以及在寒冷季节的抗冻性有限。此外,关于 CPC 耦合热管协同效应的研究相对稀少,大多数热管的数值模拟本质上是二维的。本研究提出了一种通过将 CPC 与全玻璃超导热热管 (SHP) 集成而开发的新型太阳能集热器系统,并研究了 CPC 和 SHP 之间的协同作用。采用实验研究和三维数值模拟来检验 SHP 倾角对集热器性能的影响。随后,分析了两相传热的基本原理和 SHP 的光-热转换性能。结果表明,全玻璃超导热管集热器性能的数值模拟与实验测量结果密切相关,冷凝段温度的最大相对误差为 6.71 %。此外,结果表明,SHP 与 CPC 的集成显著提高了集热器温度,实现了 383.6 K 的冷凝段温度,最佳工作倾角为 50°。