当前位置: X-MOL 学术Automatica › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reduced-order identification methods: Hierarchical algorithm or variable elimination algorithm
Automatica ( IF 4.8 ) Pub Date : 2024-11-26 , DOI: 10.1016/j.automatica.2024.111991
Jing Chen, Yawen Mao, Dongqing Wang, Min Gan, Quanmin Zhu, Feng Liu

Reduced-order identification algorithms are usually used in machine learning and big data technologies, where the large-scale systems widely exist. For large-scale system identification, traditional least squares algorithm involves high-order matrix inverse calculation, while traditional gradient descent algorithm has slow convergence rates. The reduced-order algorithm proposed in this paper has some advantages over the previous work: (1) via sequential partitioning of the parameter vector, the calculation of the inverse of a high-order matrix can be reduced to low-order matrix inverse calculations; (2) has a better conditioned information matrix than that of the gradient descent algorithm, thus has faster convergence rates; (3) its convergence rates can be increased by using the Aitken acceleration method, therefore the reduced-order based Aitken algorithm is at least quadratic convergent and has no limitation on the step-size. The properties of the reduced-order algorithm are also given. Simulation results demonstrate the effectiveness of the proposed algorithm.

中文翻译:


降阶识别方法:分层算法或变量消除算法



降阶识别算法通常用于机器学习和大数据技术,这些技术广泛存在大规模系统。对于大规模系统识别,传统的最小二乘算法涉及高阶矩阵逆计算,而传统的梯度下降算法收敛速度较慢。本文提出的降阶算法与以前的工作相比具有一些优势:(1)通过对参数向量的顺序划分,可以将高阶矩阵的逆计算简化为低阶矩阵逆计算;(2) 具有比梯度下降算法更好的条件信息矩阵,因此具有更快的收敛速率;(3) 使用 Aitken 加速方法可以提高其收敛速率,因此基于降阶的 Aitken 算法至少是二次收敛的,对步长没有限制。还给出了降阶算法的属性。仿真结果验证了所提算法的有效性。
更新日期:2024-11-26
down
wechat
bug