当前位置: X-MOL 学术J. Phys. Chem. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Complete and Efficient Covariants for Three-Dimensional Point Configurations with Application to Learning Molecular Quantum Properties
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2024-12-13 , DOI: 10.1021/acs.jpclett.4c02376
Hartmut Maennel, Oliver T. Unke, Klaus-Robert Müller

When physical properties of molecules are being modeled with machine learning, it is desirable to incorporate SO(3)-covariance. While such models based on low body order features are not complete, we formulate and prove general completeness properties for higher order methods and show that 6k – 5 of these features are enough for up to k atoms. We also find that the Clebsch–Gordan operations commonly used in these methods can be replaced by matrix multiplications without sacrificing completeness, lowering the scaling from O(l6) to O(l3) in the degree of the features. We apply this to quantum chemistry, but the proposed methods are generally applicable for problems involving three-dimensional point configurations.

中文翻译:


三维点构型的完整高效协变及其在学习分子量子性质中的应用



当使用机器学习对分子的物理性质进行建模时,需要结合 SO(3) 协方差。虽然这种基于低体顺序特征的模型并不完整,但我们制定并证明了高阶方法的一般完备性,并表明这些特征中的 6k – 5 足以用于多达 k 个原子。我们还发现,这些方法中常用的 Clebsch-Gordan 运算可以用矩阵乘法代替,而不会牺牲完整性,从而将特征程度从 Ol6) 降低到 Ol3)。我们将其应用于量子化学,但所提出的方法通常适用于涉及三维点构型的问题。
更新日期:2024-12-13
down
wechat
bug