当前位置:
X-MOL 学术
›
ACS Energy Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Unleashing High Yield Urea Production by Pulse Electrodeposition of Bi/Cu via Co-reduction of N2 and CO2
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-12-13 , DOI: 10.1021/acsenergylett.4c02823 Sukhjot Kaur, Kalpana Garg, Divyani Gupta, Alankar Kafle, Dharmender, Vivekanand Shukla, Rajeev Ahuja, Tharamani C. Nagaiah
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-12-13 , DOI: 10.1021/acsenergylett.4c02823 Sukhjot Kaur, Kalpana Garg, Divyani Gupta, Alankar Kafle, Dharmender, Vivekanand Shukla, Rajeev Ahuja, Tharamani C. Nagaiah
The expanding agricultural practices rely on carbon- and energy-intensive Bosch–Meiser processes for urea synthesis. Alternatively, electrochemical coupling of CO2 and N2 is emerging as a sustainable approach. Unfortunately, the high energy barrier for N2 and CO2 cracking for C–N bond coupling limits the urea synthesis efficiency. Herein, we have electrodeposited Bi on Cu foil via triple pulse voltage, and the fabricated Bi(0.01 V)@Cu electrode demonstrates a high yield rate of 646 μg h–1 mg–1cat. of urea with 70.7% Faradaic efficiency at −0.45 V vs RHE. The isotopic labeling experiments assert that the produced urea is solely from the dissolved CO2 and N2 gases. More importantly, we have utilized in situ electrochemical Raman spectroscopy and Fourier transform infrared (FTIR) measurements to monitor the real-time formation of urea, further supported by a microelectrochemical approach using a Pt-microelectrode and the results were verified by density functional theory (DFT) analysis. Moving a step forward, plant growth and flowering upon addition of extracted urea have been demonstrated for practical application.
中文翻译:
通过 N2 和 CO2 的共还原实现 Bi/Cu 的脉冲电沉积,实现高产率尿素生产
不断扩大的农业实践依赖于碳和能源密集型的 Bosch-Meiser 工艺来合成尿素。或者,CO2 和 N2 的电化学耦合正在成为一种可持续的方法。不幸的是,C-N 键偶联的 N2 和 CO2 开裂的高能垒限制了尿素合成效率。在本文中,我们通过三脉冲电压在铜箔上电沉积了 Bi,制造的 Bi(0.01 V)@Cu 电极在 -0.45 V vs RHE 下表现出 646 μg h–1 mg–1cat. 尿素的高产率和 70.7% 的法拉第效率。同位素标记实验断言,产生的尿素完全来自溶解的 CO2 和 N2 气体。更重要的是,我们利用原位电化学拉曼光谱和傅里叶变换红外 (FTIR) 测量来监测尿素的实时形成,进一步得到了使用 Pt 微电极的微电化学方法的支持,结果通过密度泛函理论 (DFT) 分析进行了验证。向前迈进一步,添加提取的尿素后植物生长和开花已被证明可用于实际应用。
更新日期:2024-12-13
中文翻译:
通过 N2 和 CO2 的共还原实现 Bi/Cu 的脉冲电沉积,实现高产率尿素生产
不断扩大的农业实践依赖于碳和能源密集型的 Bosch-Meiser 工艺来合成尿素。或者,CO2 和 N2 的电化学耦合正在成为一种可持续的方法。不幸的是,C-N 键偶联的 N2 和 CO2 开裂的高能垒限制了尿素合成效率。在本文中,我们通过三脉冲电压在铜箔上电沉积了 Bi,制造的 Bi(0.01 V)@Cu 电极在 -0.45 V vs RHE 下表现出 646 μg h–1 mg–1cat. 尿素的高产率和 70.7% 的法拉第效率。同位素标记实验断言,产生的尿素完全来自溶解的 CO2 和 N2 气体。更重要的是,我们利用原位电化学拉曼光谱和傅里叶变换红外 (FTIR) 测量来监测尿素的实时形成,进一步得到了使用 Pt 微电极的微电化学方法的支持,结果通过密度泛函理论 (DFT) 分析进行了验证。向前迈进一步,添加提取的尿素后植物生长和开花已被证明可用于实际应用。