当前位置:
X-MOL 学术
›
ACS Energy Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Conversation with Ib Chorkendorff
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-12-13 , DOI: 10.1021/acsenergylett.4c03085 Prashant V. Kamat
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-12-13 , DOI: 10.1021/acsenergylett.4c03085 Prashant V. Kamat
Prof. Ib Chorkendorff is a Professor in the Department of Physics at Danmarks Tekniske Universitet (DTU). His initial research interest focused on surface reactivity of heterogeneous catalysts, and later expanded to include electrocatalysis and photoelectrocatalysis for energy harvesting and conversion. Notably, his seminal contributions to the fundamental understanding of CO2 and N2 reduction have led to new advances in designing electrocatalytic systems for sustainable fuels. He remains a leading advocate for reducing our carbon footprint through the development of sustainable fuels. The Department of Physics at DTU has been organizing a summer school for students and young researchers for the last two decades. (1) During my recent participation in the 2024 SurfCat Summer School (Figure 1), I had the opportunity to converse with Prof. Ib Chorkendorff. Figure 1. During a discussion with Ib Chorkendorff at the 2024 SurfCat Summer School, Kobaek Strand, Denmark. (Photo Courtesy: P. Kamat) PK: What were the early motivations that led you to get interested in electrocatalysis research? IC: From a young age, I was deeply interested in energy and energy conversion. This interest dates back to my high school days in the 1970s in Denmark, when car-free Sundays were introduced due to gasoline and oil shortages─an energy vulnerability that left a lasting impression on me. During my studies, I specialized in surface science, though without focusing specifically on energy, as the crisis had subsided for the time being. While working on my master’s degree, I had the opportunity to spend six months at Haldor Topsoe A/S, a Danish catalyst manufacturer. This experience helped me realize what I wanted to pursue as a career. After completing my Ph.D. in surface science of rare earth metals and their alloys, I did my postdoctoral work with John Yates at the University of Pittsburgh, where I earned experience on surface reactions and catalysis. In the early part of my career, I focused on single-crystal surface reactions and thermal catalysis, supported by collaborations with Haldor Topsoe, who encouraged more rigorous teaching of these subjects at DTU. By the turn of the century, I returned to my passion for energy, initiating a project called “Towards a Hydrogen Society”, where fuel cells were seen as an efficient energy source. Initially, electrochemistry held little appeal for me, as I associated it mainly with corrosion of automobiles and electroplating, both of which I found uninteresting. However, from an energy perspective, new possibilities opened up, and I began exploring fundamental single-crystal studies, fuel cells, and eventually photoelectrocatalysis. In recent years, my work has focused on energy conversion─particularly water splitting─and the challenge of coupling protons directly to CO2 or N2 to produce chemicals and fuels. My approach has generally been based on my background in surface science. I avoided battery research, since much of the activity in that field occurs at buried interfaces that are challenging to access with these methodologies. Nevertheless, I eventually ventured into that area as well, particularly in the context of ammonia synthesis, which involved a lithium-mediated process where complex solid–electrolyte interface (SEI) layers form. Although I found ways around this challenge, a deeper understanding of the SEI layer remains still desirable. Overall, my journey has been driven by the desire for energy self-sufficiency and a curiosity about the atomic-level processes underlying catalytic reactions. PK: What are the current grand challenges in electrocatalysis research? How does your Center strategize the efforts to address them? IC: The ultimate goal of our center is to eliminate greenhouse gas emissions, and the most straightforward way to achieve this is by entirely out-phasing fossil fuels. This approach should take priority over, for example, CO2 sequestration for good, which I fear may serve as an excuse for oil companies to continue with “business as usual”. Achieving fossil-free energy is feasible since we have abundant solar and wind resources, even in a northern country like Denmark. Let’s electrify everything we can and then concentrate on finding solutions for what cannot be electrified. To manage energy sustainably, we’ll need to store it long-term in the form of chemical energy. We will also need to produce chemicals and fuels, the latter primarily for applications like long-haul shipping and aviation, where electrification is less viable. From an electrochemical perspective, this process begins with water splitting to produce hydrogen and oxygen─an essential step that, despite being established for centuries, still involves a ∼30% energy loss. Reducing this loss is crucial. While some argue that energy will be “free” in the future, this is unrealistic; people investing in solar panels and wind turbines will want a return. The negative prices for renewable energy are likely only during a transitional period where we need to create a market for energy conversion which is basically non-existing today. Hydrogen produced from water splitting can support well-established thermal catalysis for manufacturing chemicals and fuels from CO2 and N2. These processes may need to adapt, though, as energy becomes decentralized. For example, while ammonia production today relies on large facilities due to the capital-intensive Haber–Bosch process caused by its high operating pressure, it might make more sense to shift to a decentralized approach since both energy production and fertilizer use are very delocalized. The oxygen generated from water splitting will also be valuable, as it can support biomass combustion in power plants to stabilize intermittent renewable energy sources. This process will produce CO2 at much higher concentration, which we can use as a feedstock for synthesizing organic chemicals and aviation fuel. So, in this context, CO2 capture and storage is relevant. We are asking questions like, “Can we make the conventional processes more efficient or find entirely new routes for energy conversion?” It is naturally also important to ask if it makes any sense─often we see new approaches where simple energy efficiency calculation rules them out beforehand. We are currently focusing on electrochemical hydrogenation of both CO2 and N2 to create competitive alternatives to conventional thermal processes. Entirely new approaches like photoelectrocatalysis, which captures light energy and directly converts it into fuels or chemicals, remains an attractive concept that we also have pursued. However, we also recognized that it may not be viable within the time frame needed to address climate challenges, so we have reallocated more funding to ammonia synthesis, exploring both thermal and electrochemical approaches. Combining these two approaches may ultimately be the most effective option. This flexibility in funding allows us to make strategic adjustments as we gain new insights and progress. PK: Water electrolyzers have been commercialized for large-scale hydrogen generation. What other electrocatalysis-based technologies are likely to emerge in the near future? IC: In my opinion, good progress has been made in electrochemical CO2. The field has managed to achieve reasonable current densities, though challenges remain with selectivity, stability and energy efficiency. I find N2 hydrogenation particularly interesting, but it is further from the target, as the current density is still an order of magnitude too low, and energy efficiency needs improvements by a factor of at least 3–4. There are also some more localized solutions that are of interest: For example, we have made a spin-off company, HpNow, that focuses on electrochemical production of hydrogen peroxide. Such decentralized facilities could also be used to upgrade waste streams or for cleaning purposes. However, these applications are more aligned with niche industries rather than addressing the larger-scale challenges. PK: You have co-founded three companies based on the work carried out in your laboratory. What were some of the challenges you encountered in taking the laboratory work to the development of commercial products? IC: First, I’d like to point out that starting companies has often happened more by opportunity than by initial planning. Sometimes, you gain enough insight to see potential, and if Ph.D. students or postdocs are interested in pursuing it, starting a company becomes a possibility. In principle, it’s relatively easy to start a company; however, creating one that actually turns a profit, rather than simply burning through investments, is a completely different challenge. The current investment climate makes getting started feasible, but the real hurdle is scaling up to mass production. This stage requires much more capital, and it’s often where scientists lose influence and interest. Fortunately, there are others who thrive on this phase and enjoy managing those challenges. Of the three companies I’ve helped start, two are still healthy and active─HPNow and Spectroinlets─while the technology from the third company, RenCat, was recently bought out by Alfa Laval, which I also consider a success. There have also been other startups from our lab, though I’m not directly involved with them as I didn’t believe they were viable. PK: What is your advice to young researchers who aspire to engage in renewable energy research? IC: I would say to any young researcher aspiring to make science a career: stay curious and appreciate that, as a university professor, you have the freedom to choose your field of research─provided you can secure funding for it. Also, you will have great colleagues and meet many interesting and friendly people on your path. Of course, you should also enjoy teaching, as it’s an integral part of being a professor. There are also excellent opportunities in industry that can fulfill many of the same goals, though the degree of freedom is naturally not the same. Scientifically, renewable energy research presents many unanswered questions that are essential to solving our pressing global challenges. This field is appealing because it is easy to justify why this type of research is important and how it can contribute to a better world. However, the main driving force should still be curiosity, as that’s what propels research forward. You may not achieve your initial goal, but along the way, you might gain deeper insights that contribute to the field, paving the way for future breakthroughs by you or others. Research is far from a straightforward path from A to B. Sometimes, unexpected solutions emerge while trying to answer completely different questions or challenges. For this reason, it’s important to stay open-minded and opportunistic, looking beyond the immediate project. Finally, I would encourage the research community to be more rigorous in their approach. Too often, the focus is on the quantity of publications rather than the content and quality. Research quality could be significantly improved if we adhered to the “good old school” standards, where measurement uncertainties were carefully considered and reported. I always say, “seeing something once doesn’t mean you’ve truly seen it.” Ideally, I like to see results replicated three times to establish measurement reliability and give a standard deviation. Unfortunately, too often, observations are measured only once and cannot be reproduced. So, tighten up your ship, because, as Richard Feynman famously said, “The first principle is that you must not fool yourself, and you are the easiest person to fool.” With that, I wish you good luck out there. Nothing beats luck, but it usually only comes after hard work─and one must also be capable of recognizing it. Prof. Ib Chorkendorff is a Professor in the Department of Physics, Danmarks Tekniske Universitet (DTU), Kongens Lyngby, Denmark. He earned his Ph.D. degree in Physics at the Physics Institute, Odense University. In 1986–87, he was a postdoc with Prof. John Yates, Jr., at the University of Pittsburgh, USA. He then joined The Technical University of Denmark (DTU) as an Associate Professor in 1987, and in 1999 he was appointed full Professor in Heterogeneous Catalysis in the Department of Physics and Chemical Engineering at DTU. He was the director of the Center for Individual Nanoparticle Functionality (CINF) at Department of Physics, DTU, between 2005 and 2015. He later served as the director of the VILLUM Center for the Science of Sustainable Fuels and Chemicals (V-SUSTAIN) between 2016 and 2024. He has published over 450 scientific papers and co-founded three spin-off companies. Clarivate Analytics has recognized him as Highly Cited Researcher since 2017. He was awarded the Julius Thomsen Gold medal (2019), a Hans Fischer Fellowship at the Technical University of Munich (2020), the Villum Kann Rassmussen Annual Award (2021), and the Eni Award: Energy Frontiers Prize (2022). This article references 1 other publications. This article has not yet been cited by other publications.
中文翻译:
与 Ib Chorkendorff 的对话
Ib Chorkendorff 教授是丹麦科技大学 (DTU) 物理系的教授。他最初的研究兴趣集中在非均相催化剂的表面反应性,后来扩展到包括用于能量收集和转换的电催化和光电催化。值得注意的是,他对 CO2 和 N2 还原的基本理解做出了开创性贡献,这导致了可持续燃料电催化系统设计的新进展。他仍然是通过开发可持续燃料来减少碳足迹的主要倡导者。在过去的二十年里,DTU 物理系一直在为学生和年轻研究人员组织暑期学校。(1) 在我最近参加 2024 年 SurfCat 暑期学校期间(图 1),我有机会与 Ib Chorkendorff 教授交谈。图 1.在丹麦 Kobaek Strand 的 2024 年 SurfCat 暑期学校与 Ib Chorkendorff 的讨论中。(图片提供:P. Kamat)鹏飞:让你对电催化研究产生兴趣的早期动机是什么?IC:从很小的时候起,我就对能源和能源转换产生了浓厚的兴趣。这种兴趣可以追溯到 1970 年代我在丹麦的高中时代,当时由于汽油和石油短缺,引入了周日无车——这种能源脆弱性给我留下了深刻的印象。在学习期间,我专攻表面科学,但没有特别关注能源,因为危机暂时已经平息。在攻读硕士学位期间,我有机会在丹麦催化剂制造商 Haldor Topsoe A/S 工作了六个月。这段经历帮助我实现了我想追求的职业。 在完成稀土金属及其合金表面科学博士学位后,我在匹兹堡大学跟随 John Yates 进行了博士后工作,在那里我获得了表面反应和催化方面的经验。在我职业生涯的早期,我专注于单晶表面反应和热催化,并与 Haldor Topsoe 合作,他鼓励 DTU 对这些学科进行更严格的教学。到世纪之交,我重新回到了对能源的热情,发起了一个名为“迈向氢能社会”的项目,将燃料电池视为一种高效的能源。最初,电化学对我来说没有什么吸引力,因为我主要将其与汽车腐蚀和电镀联系起来,我觉得这两者都很无趣。然而,从能源的角度来看,新的可能性开辟了,我开始探索基础单晶研究、燃料电池,并最终探索光电催化。近年来,我的工作主要集中在能量转换(尤其是分解水)以及将质子直接与 CO2 或 N2 偶联以产生化学品和燃料的挑战。我的方法通常基于我在表面科学方面的背景。我避免了电池研究,因为该领域的许多活动都发生在隐藏的界面上,这些界面很难用这些方法访问。尽管如此,我最终也涉足了该领域,尤其是在氨合成的背景下,它涉及形成复杂固体电解质界面 (SEI) 层的锂介导过程。尽管我找到了解决这一挑战的方法,但对 SEI 层的更深入理解仍然是可取的。 总的来说,我的旅程是由对能源自给自足的渴望和对催化反应背后的原子级过程的好奇心驱动的。鹏飞:目前电催化研究面临哪些重大挑战?您的中心如何制定解决这些问题的策略?IC:我们中心的最终目标是消除温室气体排放,而实现这一目标最直接的方法是完全淘汰化石燃料。这种方法应该优先于例如永久封存 CO2,我担心这可能会成为石油公司继续“照常营业”的借口。实现无化石能源是可行的,因为我们拥有丰富的太阳能和风能资源,即使在丹麦这样的北方国家也是如此。让我们尽可能地实现电气化,然后专注于为无法实现电气化的东西寻找解决方案。为了可持续地管理能源,我们需要以化学能的形式长期储存能源。我们还需要生产化学品和燃料,后者主要用于电气化不太可行的长途航运和航空等应用。从电化学的角度来看,这个过程从水分解产生氢气和氧气开始——这是一个必不可少的步骤,尽管已经存在了几个世纪,但仍然涉及大约 30% 的能量损失。减少这种损失至关重要。虽然有些人认为能源在未来将是“免费”的,但这是不现实的;投资太阳能电池板和风力涡轮机的人会希望获得回报。可再生能源的负价格可能只是在过渡时期出现,我们需要创建一个能源转换市场,而这在今天基本上是不存在的。 水分解产生的氢气可以支持从 CO2 和 N2 制造化学品和燃料的成熟热催化。不过,随着能源变得分散,这些过程可能需要适应。例如,虽然由于高操作压力导致资本密集型的 Haber-Bosch 工艺,今天的氨生产依赖于大型设施,但由于能源生产和肥料使用都非常分散,因此转向分散方法可能更有意义。水分解产生的氧气也很有价值,因为它可以支持发电厂的生物质燃烧,以稳定间歇性的可再生能源。这个过程将产生更高浓度的 CO2,我们可以将其用作合成有机化学品和航空燃料的原料。因此,在这种情况下,CO2 捕获和储存是相关的。我们提出了这样的问题,“我们能否提高传统流程的效率,或者找到全新的能源转换途径?当然,询问它是否有任何意义也很重要——我们经常会看到新的方法,而简单的能源效率计算会事先排除它们。我们目前专注于 CO2 和 N2 的电化学加氢,以创造传统热工艺的有竞争力的替代方案。像光电催化这样全新的方法,可以捕获光能并将其直接转化为燃料或化学品,仍然是一个有吸引力的概念,我们也一直在追求。 然而,我们也认识到,在应对气候挑战所需的时间范围内,它可能无法实现,因此我们将更多资金重新分配给氨合成,探索热和电化学方法。将这两种方法结合起来可能最终是最有效的选择。这种资金灵活性使我们能够在获得新的见解和进展时进行战略调整。鹏飞:水电解槽已商业化,用于大规模制氢。在不久的将来可能会出现哪些其他基于电催化的技术?IC:在我看来,电化学 CO2 已经取得了良好的进展。该油田已经设法实现了合理的电流密度,尽管选择性、稳定性和能源效率仍然存在挑战。我发现 N2 加氢特别有趣,但它离目标更远,因为电流密度仍然太低一个数量级,并且能源效率需要提高至少 3-4 倍。还有一些更本地化的解决方案值得关注:例如,我们成立了一家分拆公司 HpNow,专注于过氧化氢的电化学生产。这种分散的设施也可用于升级废物流或用于清洁目的。然而,这些应用程序更符合利基行业,而不是解决更大规模的挑战。鹏飞:您根据实验室所做的工作共同创立了三家公司。在将实验室工作转化为商业产品开发的过程中,您遇到了哪些挑战?IC:首先,我想指出的是,创办公司往往更多地是靠机会而不是最初的规划。 有时,你会获得足够的洞察力来看到潜力,如果博士生或博士后有兴趣追求它,那么创办公司就成为可能。原则上,创办公司相对容易;然而,创建一个真正盈利的平台,而不是简单地通过投资来烧掉,是一个完全不同的挑战。当前的投资环境使开始成为可能,但真正的障碍是扩大规模以实现大规模生产。这个阶段需要更多的资金,而且科学家往往在这里失去影响力和兴趣。幸运的是,还有其他人在这个阶段茁壮成长并喜欢应对这些挑战。在我帮助创办的三家公司中,有两家仍然健康活跃——HPNow 和 Spectroinlets——而第三家公司 RenCat 的技术最近被阿法拉伐收购,我也认为这是成功的。我们实验室还有其他初创公司,尽管我没有直接参与它们,因为我认为它们不可行。鹏飞:您对有志于从事可再生能源研究的年轻研究人员有什么建议?IC:我想对任何有志于以科学为职业的年轻研究人员说:保持好奇心,并欣赏作为一名大学教授,你可以自由选择自己的研究领域——只要你能为它获得资金。此外,您将拥有优秀的同事,并在您的道路上遇到许多有趣和友好的人。当然,你也应该喜欢教学,因为它是成为教授不可或缺的一部分。工业中也有很好的机会,可以实现许多相同的目标,尽管自由度自然不同。 从科学上讲,可再生能源研究提出了许多悬而未决的问题,这些问题对于解决我们紧迫的全球挑战至关重要。这个领域很有吸引力,因为很容易证明为什么这种类型的研究很重要,以及它如何为更美好的世界做出贡献。然而,主要驱动力仍然应该是好奇心,因为这是推动研究向前发展的动力。您可能没有实现最初的目标,但在此过程中,您可能会获得更深入的见解,从而为该领域做出贡献,为您或其他人的未来突破铺平道路。研究远非从 A 到 B 的捷径。有时,在尝试回答完全不同的问题或挑战时,会出现意想不到的解决方案。出于这个原因,保持开放的心态和机会主义很重要,不要局限于眼前的项目。最后,我鼓励研究界在他们的方法上更加严格。很多时候,人们的重点放在出版物的数量上,而不是内容和质量上。如果我们坚持 “good old school” 标准,研究质量可以显著提高,其中测量不确定性被仔细考虑和报告。我总是说,“看到一次并不意味着你真的见过它。理想情况下,我希望看到结果重复 3 次,以确定测量可靠性并给出标准偏差。不幸的是,观测值往往只测量一次,无法重现。所以,收紧你的船,因为,正如理查德·费曼 (Richard Feynman) 的名言,“第一个原则是你不能欺骗自己,而你是最容易被欺骗的人。说到这里,我祝你好运。没有什么能比得上运气,但通常只有在努力工作之后才能出现——而且一个人还必须能够识别它。教授。 Ib Chorkendorff 是丹麦 Kongens Lyngby 丹麦科技大学 (DTU) 物理系的教授。他在欧登塞大学物理研究所获得物理学博士学位。1986-87 年,他在美国匹兹堡大学师从 John Yates, Jr. 教授进行博士后研究。随后,他于 1987 年加入丹麦技术大学 (DTU) 担任副教授,并于 1999 年被任命为丹麦技术大学物理与化学工程系多相催化正教授。2005 年至 2015 年期间,他担任 DTU 物理系单个纳米粒子功能中心 (CINF) 的主任。后来,他在 2016 年至 2024 年期间担任 VILLUM 可持续燃料和化学品科学中心 (V-SUSTAIN) 的主任。他发表了 450 多篇科学论文,并共同创立了三家衍生公司。自 2017 年以来,科睿唯安一直将他评为高被引研究人员。他获得了 Julius Thomsen 金奖(2019 年)、慕尼黑工业大学 Hans Fischer 奖学金(2020 年)、Villum Kann Rassmussen 年度奖(2021 年)和 Eni 奖:能源前沿奖(2022 年)。本文参考了 1 其他出版物。本文尚未被其他出版物引用。
更新日期:2024-12-13
中文翻译:
与 Ib Chorkendorff 的对话
Ib Chorkendorff 教授是丹麦科技大学 (DTU) 物理系的教授。他最初的研究兴趣集中在非均相催化剂的表面反应性,后来扩展到包括用于能量收集和转换的电催化和光电催化。值得注意的是,他对 CO2 和 N2 还原的基本理解做出了开创性贡献,这导致了可持续燃料电催化系统设计的新进展。他仍然是通过开发可持续燃料来减少碳足迹的主要倡导者。在过去的二十年里,DTU 物理系一直在为学生和年轻研究人员组织暑期学校。(1) 在我最近参加 2024 年 SurfCat 暑期学校期间(图 1),我有机会与 Ib Chorkendorff 教授交谈。图 1.在丹麦 Kobaek Strand 的 2024 年 SurfCat 暑期学校与 Ib Chorkendorff 的讨论中。(图片提供:P. Kamat)鹏飞:让你对电催化研究产生兴趣的早期动机是什么?IC:从很小的时候起,我就对能源和能源转换产生了浓厚的兴趣。这种兴趣可以追溯到 1970 年代我在丹麦的高中时代,当时由于汽油和石油短缺,引入了周日无车——这种能源脆弱性给我留下了深刻的印象。在学习期间,我专攻表面科学,但没有特别关注能源,因为危机暂时已经平息。在攻读硕士学位期间,我有机会在丹麦催化剂制造商 Haldor Topsoe A/S 工作了六个月。这段经历帮助我实现了我想追求的职业。 在完成稀土金属及其合金表面科学博士学位后,我在匹兹堡大学跟随 John Yates 进行了博士后工作,在那里我获得了表面反应和催化方面的经验。在我职业生涯的早期,我专注于单晶表面反应和热催化,并与 Haldor Topsoe 合作,他鼓励 DTU 对这些学科进行更严格的教学。到世纪之交,我重新回到了对能源的热情,发起了一个名为“迈向氢能社会”的项目,将燃料电池视为一种高效的能源。最初,电化学对我来说没有什么吸引力,因为我主要将其与汽车腐蚀和电镀联系起来,我觉得这两者都很无趣。然而,从能源的角度来看,新的可能性开辟了,我开始探索基础单晶研究、燃料电池,并最终探索光电催化。近年来,我的工作主要集中在能量转换(尤其是分解水)以及将质子直接与 CO2 或 N2 偶联以产生化学品和燃料的挑战。我的方法通常基于我在表面科学方面的背景。我避免了电池研究,因为该领域的许多活动都发生在隐藏的界面上,这些界面很难用这些方法访问。尽管如此,我最终也涉足了该领域,尤其是在氨合成的背景下,它涉及形成复杂固体电解质界面 (SEI) 层的锂介导过程。尽管我找到了解决这一挑战的方法,但对 SEI 层的更深入理解仍然是可取的。 总的来说,我的旅程是由对能源自给自足的渴望和对催化反应背后的原子级过程的好奇心驱动的。鹏飞:目前电催化研究面临哪些重大挑战?您的中心如何制定解决这些问题的策略?IC:我们中心的最终目标是消除温室气体排放,而实现这一目标最直接的方法是完全淘汰化石燃料。这种方法应该优先于例如永久封存 CO2,我担心这可能会成为石油公司继续“照常营业”的借口。实现无化石能源是可行的,因为我们拥有丰富的太阳能和风能资源,即使在丹麦这样的北方国家也是如此。让我们尽可能地实现电气化,然后专注于为无法实现电气化的东西寻找解决方案。为了可持续地管理能源,我们需要以化学能的形式长期储存能源。我们还需要生产化学品和燃料,后者主要用于电气化不太可行的长途航运和航空等应用。从电化学的角度来看,这个过程从水分解产生氢气和氧气开始——这是一个必不可少的步骤,尽管已经存在了几个世纪,但仍然涉及大约 30% 的能量损失。减少这种损失至关重要。虽然有些人认为能源在未来将是“免费”的,但这是不现实的;投资太阳能电池板和风力涡轮机的人会希望获得回报。可再生能源的负价格可能只是在过渡时期出现,我们需要创建一个能源转换市场,而这在今天基本上是不存在的。 水分解产生的氢气可以支持从 CO2 和 N2 制造化学品和燃料的成熟热催化。不过,随着能源变得分散,这些过程可能需要适应。例如,虽然由于高操作压力导致资本密集型的 Haber-Bosch 工艺,今天的氨生产依赖于大型设施,但由于能源生产和肥料使用都非常分散,因此转向分散方法可能更有意义。水分解产生的氧气也很有价值,因为它可以支持发电厂的生物质燃烧,以稳定间歇性的可再生能源。这个过程将产生更高浓度的 CO2,我们可以将其用作合成有机化学品和航空燃料的原料。因此,在这种情况下,CO2 捕获和储存是相关的。我们提出了这样的问题,“我们能否提高传统流程的效率,或者找到全新的能源转换途径?当然,询问它是否有任何意义也很重要——我们经常会看到新的方法,而简单的能源效率计算会事先排除它们。我们目前专注于 CO2 和 N2 的电化学加氢,以创造传统热工艺的有竞争力的替代方案。像光电催化这样全新的方法,可以捕获光能并将其直接转化为燃料或化学品,仍然是一个有吸引力的概念,我们也一直在追求。 然而,我们也认识到,在应对气候挑战所需的时间范围内,它可能无法实现,因此我们将更多资金重新分配给氨合成,探索热和电化学方法。将这两种方法结合起来可能最终是最有效的选择。这种资金灵活性使我们能够在获得新的见解和进展时进行战略调整。鹏飞:水电解槽已商业化,用于大规模制氢。在不久的将来可能会出现哪些其他基于电催化的技术?IC:在我看来,电化学 CO2 已经取得了良好的进展。该油田已经设法实现了合理的电流密度,尽管选择性、稳定性和能源效率仍然存在挑战。我发现 N2 加氢特别有趣,但它离目标更远,因为电流密度仍然太低一个数量级,并且能源效率需要提高至少 3-4 倍。还有一些更本地化的解决方案值得关注:例如,我们成立了一家分拆公司 HpNow,专注于过氧化氢的电化学生产。这种分散的设施也可用于升级废物流或用于清洁目的。然而,这些应用程序更符合利基行业,而不是解决更大规模的挑战。鹏飞:您根据实验室所做的工作共同创立了三家公司。在将实验室工作转化为商业产品开发的过程中,您遇到了哪些挑战?IC:首先,我想指出的是,创办公司往往更多地是靠机会而不是最初的规划。 有时,你会获得足够的洞察力来看到潜力,如果博士生或博士后有兴趣追求它,那么创办公司就成为可能。原则上,创办公司相对容易;然而,创建一个真正盈利的平台,而不是简单地通过投资来烧掉,是一个完全不同的挑战。当前的投资环境使开始成为可能,但真正的障碍是扩大规模以实现大规模生产。这个阶段需要更多的资金,而且科学家往往在这里失去影响力和兴趣。幸运的是,还有其他人在这个阶段茁壮成长并喜欢应对这些挑战。在我帮助创办的三家公司中,有两家仍然健康活跃——HPNow 和 Spectroinlets——而第三家公司 RenCat 的技术最近被阿法拉伐收购,我也认为这是成功的。我们实验室还有其他初创公司,尽管我没有直接参与它们,因为我认为它们不可行。鹏飞:您对有志于从事可再生能源研究的年轻研究人员有什么建议?IC:我想对任何有志于以科学为职业的年轻研究人员说:保持好奇心,并欣赏作为一名大学教授,你可以自由选择自己的研究领域——只要你能为它获得资金。此外,您将拥有优秀的同事,并在您的道路上遇到许多有趣和友好的人。当然,你也应该喜欢教学,因为它是成为教授不可或缺的一部分。工业中也有很好的机会,可以实现许多相同的目标,尽管自由度自然不同。 从科学上讲,可再生能源研究提出了许多悬而未决的问题,这些问题对于解决我们紧迫的全球挑战至关重要。这个领域很有吸引力,因为很容易证明为什么这种类型的研究很重要,以及它如何为更美好的世界做出贡献。然而,主要驱动力仍然应该是好奇心,因为这是推动研究向前发展的动力。您可能没有实现最初的目标,但在此过程中,您可能会获得更深入的见解,从而为该领域做出贡献,为您或其他人的未来突破铺平道路。研究远非从 A 到 B 的捷径。有时,在尝试回答完全不同的问题或挑战时,会出现意想不到的解决方案。出于这个原因,保持开放的心态和机会主义很重要,不要局限于眼前的项目。最后,我鼓励研究界在他们的方法上更加严格。很多时候,人们的重点放在出版物的数量上,而不是内容和质量上。如果我们坚持 “good old school” 标准,研究质量可以显著提高,其中测量不确定性被仔细考虑和报告。我总是说,“看到一次并不意味着你真的见过它。理想情况下,我希望看到结果重复 3 次,以确定测量可靠性并给出标准偏差。不幸的是,观测值往往只测量一次,无法重现。所以,收紧你的船,因为,正如理查德·费曼 (Richard Feynman) 的名言,“第一个原则是你不能欺骗自己,而你是最容易被欺骗的人。说到这里,我祝你好运。没有什么能比得上运气,但通常只有在努力工作之后才能出现——而且一个人还必须能够识别它。教授。 Ib Chorkendorff 是丹麦 Kongens Lyngby 丹麦科技大学 (DTU) 物理系的教授。他在欧登塞大学物理研究所获得物理学博士学位。1986-87 年,他在美国匹兹堡大学师从 John Yates, Jr. 教授进行博士后研究。随后,他于 1987 年加入丹麦技术大学 (DTU) 担任副教授,并于 1999 年被任命为丹麦技术大学物理与化学工程系多相催化正教授。2005 年至 2015 年期间,他担任 DTU 物理系单个纳米粒子功能中心 (CINF) 的主任。后来,他在 2016 年至 2024 年期间担任 VILLUM 可持续燃料和化学品科学中心 (V-SUSTAIN) 的主任。他发表了 450 多篇科学论文,并共同创立了三家衍生公司。自 2017 年以来,科睿唯安一直将他评为高被引研究人员。他获得了 Julius Thomsen 金奖(2019 年)、慕尼黑工业大学 Hans Fischer 奖学金(2020 年)、Villum Kann Rassmussen 年度奖(2021 年)和 Eni 奖:能源前沿奖(2022 年)。本文参考了 1 其他出版物。本文尚未被其他出版物引用。