当前位置: X-MOL 学术Energy Storage Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effective control of the solution environment in aqueous Zinc-ion batteries for promoting (002)-textured zinc growth by a Bio-electrolyte additive
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-12-12 , DOI: 10.1016/j.ensm.2024.103959
Yarui Xiong, Weiyu Teng, Zhiwei Zhao, Shilin Xu, Yingyuan Ma, Yingzhen Gong, Dehua Li, Xun Wang, Yaoxi Shen, Zhen Shen, Yi Hu

Aqueous zinc-ion batteries (AZIBs) have garnered considerable interest due to their intrinsic safety features and high energy density. However, challenges such as the growth of Zn dendrites and the prevalence of parasitic reactions during cycling have impeded their broader application. This study introduces Silk Sericin (SS), a multifunctional natural protein, as an electrolyte additive designed to overcome these obstacles. Through a series of detailed experimental validations and theoretical analyses, it is demonstrated that SS molecules, rich in polar functional groups, effectively anchor onto the anode-electrolyte interphase. This anchoring leads to the formation of a stable solid electrolyte interface (SEI) layer while simultaneously modulating the coordination environment of zinc ions through strong interactions with water molecules. The adsorption energies and substantial binding affinity of SS induce a synergistic effect, preferentially orienting zinc ions deposition on the (002) plane, thereby promoting the formation of a flat and compact deposition layer. The modified Zn || Zn cells containing 1 % SS exhibit exceptional durability, surpassing 5200 h of operation at 1 mA cm−2/1 mAh cm−2 with highly reversible Zn plating/stripping behavior. Moreover, Zn || VO2 full cells deliver a high specific capacity of 213 mAh g−1 at 4 A g−1, maintaining robust performances over 3800 cycles. Additionally, Aqueous zinc-ion micro-batteries (AZMBs) based on SS demonstrate superior capacity retention, underscoring their potential for advanced energy storage applications. This research presents a novel electrolyte engineering approach that combines interface control with solution environment optimization, offering an effective strategy to enhance both the reversibility and stability of Zn anodes.

中文翻译:


通过生物电解质添加剂有效控制水性锌离子电池中的溶液环境,以促进 (002) 纹理锌的生长



水系锌离子电池 (AZIB) 因其本质安全特性和高能量密度而引起了人们的极大兴趣。然而,诸如 Zn 枝晶的生长和循环过程中寄生反应的普遍存在等挑战阻碍了它们的更广泛应用。本研究介绍了 Silk Sectin (SS),一种多功能天然蛋白质,作为一种电解质添加剂,旨在克服这些障碍。通过一系列详细的实验验证和理论分析,证明富含极性官能团的 SS 分子有效地锚定在阳极-电解质界面上。这种锚定导致形成稳定的固体电解质界面 (SEI) 层,同时通过与水分子的强烈相互作用来调节锌离子的配位环境。SS 的吸附能和实质性的结合亲和力诱导协同效应,优先将锌离子沉积在 (002) 平面上,从而促进形成平坦而紧凑的沉积层。修改后的 Zn ||含有 1% SS 的 Zn 电池表现出卓越的耐用性,在 1 mA cm −2 /1 mAh cm −2 下的运行时间超过 5200 小时,具有高度可逆的 Zn 电镀/剥离行为。此外,Zn ||VO 2 全电池在 4 A g −1 下提供 213 mAh g −1 的高比容量,在 3800 次循环中保持稳健的性能。此外,基于 SS 的水性锌离子微型电池 (AZMB) 表现出卓越的容量保持能力,凸显了它们在高级储能应用中的潜力。 本研究提出了一种新颖的电解质工程方法,该方法将界面控制与溶液环境优化相结合,提供了一种有效的策略来提高 Zn 阳极的可逆性和稳定性。
更新日期:2024-12-12
down
wechat
bug