当前位置: X-MOL 学术J. Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A review on uranyl-based photocatalysts in photocatalytic organic transformation
Journal of Catalysis ( IF 6.5 ) Pub Date : 2024-12-12 , DOI: 10.1016/j.jcat.2024.115900
Peng Gao, Zewen Shen, Yana Chen, Tao Jiang, Zhuoyu Ji, Guixia Zhao, Junrong Yue, Yezi Hu, Xiangke Wang, Xiubing Huang, Martin Muhler, Lisha Yin

Depleted uranium as a mildly radioactive waste product from the 235U enrichment process is stocked worldwide, which can be considered as ideal photocatalyst for light-driven photo-redox reactions. Under light irradiation, the generated excited-state *UO22+ possesses strong oxidative ability and long-lived fluorescence lifetime via ligand to metal charge transfer (LMCT), which can be effectively quenched by organic substrates via hydrogen atom transfer (HAT) and single electron transfer (SET) processes. The applications of both homogeneous and heterogeneous uranyl-based photocatalysts (including uranyl salts, uranyl-loading composite catalysts, uranyl-based complexes, and uranyl-based metal–organic frameworks) exhibit their advances in unique electronic structure, excellent photochemical properties, and outstanding photocatalytic performance in organic photo-transformation reactions. This review is to highlight the light-driven transformation of organic substances over various types of homogeneous and heterogeneous uranyl-based photocatalysts. The current research survey verifies that spent nuclear waste possesses great potential to construct efficient photocatalysts for light-driven organics transformation.

中文翻译:


铀酰基光催化剂在光催化有机转化中的研究进展



贫铀作为 235U 浓缩过程中产生的弱放射性废物,在世界范围内储存,可以被认为是光驱动光氧化还原反应的理想光催化剂。在光照射下,生成的激发态 *UO22+ 通过配体到金属电荷转移 (LMCT) 具有很强的氧化能力和长寿命的荧光寿命,可以通过氢原子转移 (HAT) 和单电子转移 (SET) 过程被有机底物有效淬灭。均相和非均相铀酰基光催化剂(包括铀酰盐、铀酰负载复合催化剂、铀酰基配合物和铀酰基金属有机框架)的应用均显示出它们在有机光转化反应中独特的电子结构、优异的光化学性能和出色的光催化性能。本文旨在强调有机物质在各种类型的均相和非均相铀酰基光催化剂上的光驱动转化。目前的研究调查证实,废核废料具有构建高效光催化剂用于光驱动有机物转化的巨大潜力。
更新日期:2024-12-13
down
wechat
bug