当前位置:
X-MOL 学术
›
J. Geophys. Res. Solid Earth
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Melting of B1-Phase MgO From Simultaneous True Radiative Shock Temperature and Sound Speed Measurements to 250 GPa on Samples Preheated to 2300 K
Journal of Geophysical Research: Solid Earth ( IF 3.9 ) Pub Date : 2024-12-13 , DOI: 10.1029/2024jb029137 O. V. Fat’yanov, P. D. Asimow
Journal of Geophysical Research: Solid Earth ( IF 3.9 ) Pub Date : 2024-12-13 , DOI: 10.1029/2024jb029137 O. V. Fat’yanov, P. D. Asimow
To refine the melting curve, equation of state, and physical properties of MgO we performed plate impact experiments spanning 170–250 GPa on MgO single crystals, preheated to 2300 K. A controlled thermal gradient in 20 mm long samples enabled radiative temperature ( 3%–4%) and rarefaction overtake observations (yielding sound speed 2%) close to the hot Mo driver with a free surface below 2000 K that minimized evaporation. Ta flyers were launched by two-stage light-gas gun up to 7.6 km/s and sample radiance was recorded with a 6-channel (500–850 nm) pyrometer. Shock front reflectivity was measured at 198 and 243 GPa using 50/50 sapphire beam-splitters. Most experiments show monotonic increases of shock temperature with pressure, from (168 GPa, 7100 K) to (243 GPa, 9400 K), in good agreement with predictions of our MgO B1 phase equation of state. Measured sound speeds are parallel to but 10% higher than model predictions for bulk sound speed of solid B1 MgO, confirming ductile behavior of preheated MgO. Two experiments, at 238 and 246 GPa, showed anomalously low shock temperature and sound speed, suggesting melting. Using reported MgO melting data up to 120 GPa and our data at 232–246 GPa, we constructed a maximum-likelihood Simon-Glatzel fit. At Earth's core-mantle boundary pressure (135 GPa), our best-fit interpolated MgO melting point is K. Our proposed melting line falls within the envelope of theoretical predictions but does not completely agree with any particular model curve. Our results reduce the uncertainty on MgO melting temperature at Earth's core-mantle boundary by a factor of 17 and provide an anchor for extension to multicomponent systems.
中文翻译:
在预热至 2300 K 的样品上,通过同时进行真辐射冲击温度和声速测量到 250 GPa 的 B1 相 MgO 熔解
为了细化 MgO 的熔解曲线、状态方程和物理性质,我们对预热至 2300 K 的 MgO 单晶进行了 170-250 GPa 的板式冲击实验。在 20 mm 长的样品中 控制热梯度,可以在热 Mo 驱动器附近实现辐射温度 ( 3%–4%) 和稀疏超车观测(产生声速 2%),自由表面低于 2000 K,从而最大限度地减少蒸发。Ta 飞行器由两级轻气枪发射,速度高达 7.6 km/s,并使用 6 通道 (500–850 nm) 高温计记录样品辐射。使用 50/50 蓝宝石分束器在 198 和 243 GPa 下测量激波前反射率。大多数实验显示冲击温度随压力单调增加,从 (168 GPa, 7100 K) 到 (243 GPa, 9400 K),这与我们的 MgO B1 状态相位方程的预测非常吻合。测得的声速与固体 B1 MgO 的体声速模型预测平行,但 比模型预测的 10% 高,证实了预热 MgO 的延展性。在 238 GPa 和 246 GPa 下的两个实验显示异常低的冲击温度和声速,表明熔化。使用报告的高达 120 GPa 的 MgO 熔解数据和 232-246 GPa 的数据,我们构建了最大似然 Simon-Glatzel 拟合。在地球的地核-地幔边界压力 (135 GPa) 下,我们的最佳拟合插值 MgO 熔点是 K。我们提出的熔化线属于理论预测的范围,但与任何特定的模型曲线并不完全一致。我们的结果将地球核心-地幔边界处 MgO 熔化温度的不确定性降低了 17 倍,并为扩展到多组分系统提供了锚点。
更新日期:2024-12-13
中文翻译:
在预热至 2300 K 的样品上,通过同时进行真辐射冲击温度和声速测量到 250 GPa 的 B1 相 MgO 熔解
为了细化 MgO 的熔解曲线、状态方程和物理性质,我们对预热至 2300 K 的 MgO 单晶进行了 170-250 GPa 的板式冲击实验。在 20 mm 长的样品中 控制热梯度,可以在热 Mo 驱动器附近实现辐射温度 ( 3%–4%) 和稀疏超车观测(产生声速 2%),自由表面低于 2000 K,从而最大限度地减少蒸发。Ta 飞行器由两级轻气枪发射,速度高达 7.6 km/s,并使用 6 通道 (500–850 nm) 高温计记录样品辐射。使用 50/50 蓝宝石分束器在 198 和 243 GPa 下测量激波前反射率。大多数实验显示冲击温度随压力单调增加,从 (168 GPa, 7100 K) 到 (243 GPa, 9400 K),这与我们的 MgO B1 状态相位方程的预测非常吻合。测得的声速与固体 B1 MgO 的体声速模型预测平行,但 比模型预测的 10% 高,证实了预热 MgO 的延展性。在 238 GPa 和 246 GPa 下的两个实验显示异常低的冲击温度和声速,表明熔化。使用报告的高达 120 GPa 的 MgO 熔解数据和 232-246 GPa 的数据,我们构建了最大似然 Simon-Glatzel 拟合。在地球的地核-地幔边界压力 (135 GPa) 下,我们的最佳拟合插值 MgO 熔点是 K。我们提出的熔化线属于理论预测的范围,但与任何特定的模型曲线并不完全一致。我们的结果将地球核心-地幔边界处 MgO 熔化温度的不确定性降低了 17 倍,并为扩展到多组分系统提供了锚点。