当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Deep Layer Pillaring Reinforced Electronic States and Structural Defects Toward High‐Performance Sodium Ion Battery
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-12-13 , DOI: 10.1002/aenm.202404685 Sahar Osman, Sanlue Hu, Yijie Wei, Junhao Liu, Jun Xiao, Wenjiao Yao, Cuiping Han, Xin Guo, Jun Liu, Yongbing Tang
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-12-13 , DOI: 10.1002/aenm.202404685 Sahar Osman, Sanlue Hu, Yijie Wei, Junhao Liu, Jun Xiao, Wenjiao Yao, Cuiping Han, Xin Guo, Jun Liu, Yongbing Tang
Although layered vanadium oxides are extensively studied for sodium‐ion batteries (SIBs), their broader application is hindered by the instability of their bulk‐phase structure, sluggish electron/ion‐transfer kinetics, and insufficient active sites. Herein, a novel synergistic strategy is proposed to modulate the electronic structure of VO by incorporating Na+ cations into deep V─O layers (D‐NVOx ), resulting in significant structural modifications such as enlarged lattice spacing, the generation of abundant oxygen vacancies, and disordering of the V─O layers. Comprehensive analytical characterizations and theoretical calculations reveal that this synergy induces reversible Na+ pseudocapacitive intercalation and reconstructs low‐energy barrier channels, thereby accelerating Na‐ion diffusion kinetics. Moreover, the oxygen vacancies dramatically boost electronic conductivity and reinforce structural stability. The reduced crystallinity and lattice distortion result in dense nanointerfaces, potentially widening diffusion channels and providing additional active sites for fast surface Na‐ion storage. Owing to these merits, the D‐NVOx electrode achieves a high specific capacity (505 mAh g‒1 at 0.05 A g‒1 ), outstanding cyclic stability (96% capacity retention over 2000 cycles at 2.0 A g‒1 ), and superior rate performance (280 mAh g‒1 at 5.0 A g‒1 ). This work provides in‐depth insights into enhancing electrochemical energy storage in SIBs by modulating electronic structure and structural defects.
中文翻译:
面向高性能钠离子电池的深层支柱增强电子态和结构缺陷
尽管层状钒氧化物在钠离子电池 (SIB) 中得到了广泛的研究,但由于其体相结构的不稳定性、电子/离子转移动力学缓慢和活性位点不足,阻碍了其更广泛的应用。在此,提出了一种新的协同策略,通过将 Na + 阳离子掺入深 V-O 层 (D-NVOx) 来调节 VO 的电子结构,从而导致显着的结构修饰,例如晶格间距扩大、产生丰富的氧空位和 V-O 层的无序化。全面的分析表征和理论计算表明,这种协同作用诱导可逆的 Na+ 伪电容插层并重建低能势垒通道,从而加速 Na 离子扩散动力学。此外,氧空位显着提高了电子导电性并增强了结构稳定性。结晶度降低和晶格畸变导致致密的纳米界面,可能会扩大扩散通道并为快速表面钠离子存储提供额外的活性位点。由于这些优点,D-NVOx 电极实现了高比容量(0.05 A g\u20121 时为 505 mAh g\u20121)、出色的循环稳定性(在 2.0 A g\u20121 下,2000 次循环中容量保持 96%)和卓越的倍率性能(5.0 A g\u20121 时为 280 mAh g\u20121)。这项工作为通过调节电子结构和结构缺陷来增强 SIB 中的电化学储能提供了深入的见解。
更新日期:2024-12-13
中文翻译:
面向高性能钠离子电池的深层支柱增强电子态和结构缺陷
尽管层状钒氧化物在钠离子电池 (SIB) 中得到了广泛的研究,但由于其体相结构的不稳定性、电子/离子转移动力学缓慢和活性位点不足,阻碍了其更广泛的应用。在此,提出了一种新的协同策略,通过将 Na + 阳离子掺入深 V-O 层 (D-NVOx) 来调节 VO 的电子结构,从而导致显着的结构修饰,例如晶格间距扩大、产生丰富的氧空位和 V-O 层的无序化。全面的分析表征和理论计算表明,这种协同作用诱导可逆的 Na+ 伪电容插层并重建低能势垒通道,从而加速 Na 离子扩散动力学。此外,氧空位显着提高了电子导电性并增强了结构稳定性。结晶度降低和晶格畸变导致致密的纳米界面,可能会扩大扩散通道并为快速表面钠离子存储提供额外的活性位点。由于这些优点,D-NVOx 电极实现了高比容量(0.05 A g\u20121 时为 505 mAh g\u20121)、出色的循环稳定性(在 2.0 A g\u20121 下,2000 次循环中容量保持 96%)和卓越的倍率性能(5.0 A g\u20121 时为 280 mAh g\u20121)。这项工作为通过调节电子结构和结构缺陷来增强 SIB 中的电化学储能提供了深入的见解。