Precision Agriculture ( IF 5.4 ) Pub Date : 2024-12-13 , DOI: 10.1007/s11119-024-10197-y Anna Petrovskaia, Mikhail Gasanov, Artyom Nikitin, Polina Tregubova, Ivan Oseledets
Soil sampling is crucial for capturing soil variability and obtaining comprehensive soil information for agricultural planning. This article evaluates the potential of MaxVol, an optimal design method for soil sampling based on selecting locations with significant dissimilarities. We compared MaxVol with conditional Latin hypercube sampling (cLHS), simple random sampling (SRS) and Kennard-Stone algorithm (KS) to evaluate their ability to capture soil data distribution. We modeled spatial distributions of soil properties using simple kriging (SK) and regression kriging (RK) interpolation techniques and assessed the interpolation quality using Root Mean Square Error. According to the results, MaxVol performs similarly or better than popular sampling designs in describing soil distributions, particularly with a smaller number of points. This is valuable for costly and time-consuming field surveys. Both MaxVol and Kennard-Stone are deterministic algorithms, unlike cLHS and random sampling, providing a reliable sampling scheme. Thus, the proposed MaxVol algorithm enables obtaining soil property distributions based on environmental features.
中文翻译:
使用基于 MaxVol 矩阵近似的空间采样最大化农业调查中的数据集变异性
土壤采样对于捕获土壤变化和获得用于农业规划的全面土壤信息至关重要。本文评估了 MaxVol 的潜力,MaxVol 是一种基于选择具有显著差异的位置的土壤采样最佳设计方法。我们将 MaxVol 与条件拉丁超立方体采样 (cLHS) 、简单随机采样 (SRS) 和 Kennard-Stone 算法 (KS) 进行了比较,以评估它们捕获土壤数据分布的能力。我们使用简单克里金法 (SK) 和回归克里金法 (RK) 插值技术对土壤特性的空间分布进行建模,并使用均方根误差评估插值质量。根据结果,MaxVol 在描述土壤分布时的性能与流行的采样设计相似或更好,尤其是在点数较少的情况下。这对于昂贵且耗时的现场调查非常有价值。MaxVol 和 Kennard-Stone 都是确定性算法,与 cLHS 和随机采样不同,它提供了一种可靠的采样方案。因此,所提出的 MaxVol 算法能够根据环境特征获得土壤特性分布。