当前位置:
X-MOL 学术
›
Adv. Comput. Math.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A posteriori error control for a discontinuous Galerkin approximation of a Keller-Segel model
Advances in Computational Mathematics ( IF 1.7 ) Pub Date : 2024-12-13 , DOI: 10.1007/s10444-024-10212-w Jan Giesselmann, Kiwoong Kwon
中文翻译:
Keller-Segel 模型的间断 Galerkin 近似的后验误差控制
更新日期:2024-12-13
Advances in Computational Mathematics ( IF 1.7 ) Pub Date : 2024-12-13 , DOI: 10.1007/s10444-024-10212-w Jan Giesselmann, Kiwoong Kwon
We provide a posteriori error estimates for a discontinuous Galerkin scheme for the parabolic-elliptic Keller-Segel system in 2 or 3 space dimensions. The estimates are conditional in the sense that an a posteriori computable quantity needs to be small enough—which can be ensured by mesh refinement—and optimal in the sense that the error estimator decays with the same order as the error under mesh refinement. A specific feature of our error estimator is that it can be used to prove the existence of a weak solution up to a certain time based on numerical results.
中文翻译:
Keller-Segel 模型的间断 Galerkin 近似的后验误差控制
我们为抛物线-椭圆 Keller-Segel 系统在 2 或 3 个空间维度上的间断 Galerkin 方案提供了后验误差估计。这些估计是有条件的,因为后验可计算量需要足够小(这可以通过网格细化来确保),并且是最优的,因为误差估计器的衰减顺序与网格细化下的误差相同。我们的误差估计器的一个具体功能是,它可以用来根据数值结果证明在一定时间内存在弱解。