当前位置:
X-MOL 学术
›
Case Stud. Therm. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Optimal configuration of a solar-powered Organic Rankine Cycle power plant utilizing thermochemical energy storage
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-12-09 , DOI: 10.1016/j.csite.2024.105632 Sofiene Mellouli, Talal Alqahtani, Salem Algarni, Abdullah A. Faqihi, Badr M. Alshammari, Lioua Kolsi
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-12-09 , DOI: 10.1016/j.csite.2024.105632 Sofiene Mellouli, Talal Alqahtani, Salem Algarni, Abdullah A. Faqihi, Badr M. Alshammari, Lioua Kolsi
The thermal energy storage system greatly influences the efficiency and design of the Organic Rankine Cycle (ORC) power plant. In this research, a novel thermochemical energy storage (TCES) system was incorporated into the solar energy-driven ORC system to enhance its overall efficiency. The study details the TCES system, which utilizes paired metal hydrides (specifically LaNi4.25 Al0.75 /LaNi5 ) in conjunction with a phase-change material (PCM). What makes this system unique is its integration with an ORC system-a novel approach not previously explored or examined. In order to evaluate and enhance the performance of the TCES system, an optimization model based on simulations was created using the SAM (System Advisor Model) software. This optimization framework is aimed at concurrently determining the best system design, taking into account factors such as solar multiple, storage duration, the levelized cost of electricity (LCOE), and the availability of solar resources at the location of the ORC plant. This study primarily focuses on achieving the best overall performance for a 50 MW ORC power plant in Tunisia. The results of this research demonstrate that the proposed ORC plant has the potential to generate an annual energy output of 244.2 GWh-e. This outcome is achieved through an optimized system design that incorporates a net conversion efficiency of 54.4 %, a solar multiple of 2.2, and a storage duration of 6.2 h. Additionally, the levelized cost of electricity (LCOE) decreases to a minimum value of 11.4 c/kWh. The study's findings emphasize the significance of integrating the TCES system into the ORC plant, driving advancements in solar energy technologies, and providing valuable insights for the development of future ORC plants.
中文翻译:
利用热化学储能的太阳能有机朗肯循环发电厂的优化配置
热能存储系统极大地影响了有机朗肯循环 (ORC) 发电厂的效率和设计。在这项研究中,将一种新型热化学储能 (TCES) 系统整合到太阳能驱动的 ORC 系统中,以提高其整体效率。该研究详细介绍了 TCES 系统,该系统利用成对的金属氢化物(特别是 LaNi4.25Al0.75/LaNi5)与相变材料 (PCM) 结合使用。该系统的独特之处在于它与 ORC 系统的集成——一种以前从未探索或检查过的新方法。为了评估和增强 TCES 系统的性能,使用 SAM(System Advisor Model)软件创建了一个基于仿真的优化模型。该优化框架旨在同时确定最佳系统设计,同时考虑太阳能倍数、存储持续时间、平准化度电成本 (LCOE) 以及 ORC 工厂所在地太阳能资源的可用性等因素。本研究主要侧重于实现突尼斯 50 MW ORC 发电厂的最佳整体性能。这项研究的结果表明,拟议的 ORC 工厂有可能每年产生 244.2 GWh-e 的能源输出。这一结果是通过优化的系统设计实现的,该系统的净转换效率为 54.4%,太阳能倍数为 2.2,存储时间为 6.2 小时。此外,平准化度电成本 (LCOE) 降至 11.4 c/kWh 的最小值。该研究的结果强调了将 TCES 系统集成到 ORC 工厂中的重要性,推动了太阳能技术的进步,并为未来 ORC 工厂的发展提供了宝贵的见解。
更新日期:2024-12-09
中文翻译:
利用热化学储能的太阳能有机朗肯循环发电厂的优化配置
热能存储系统极大地影响了有机朗肯循环 (ORC) 发电厂的效率和设计。在这项研究中,将一种新型热化学储能 (TCES) 系统整合到太阳能驱动的 ORC 系统中,以提高其整体效率。该研究详细介绍了 TCES 系统,该系统利用成对的金属氢化物(特别是 LaNi4.25Al0.75/LaNi5)与相变材料 (PCM) 结合使用。该系统的独特之处在于它与 ORC 系统的集成——一种以前从未探索或检查过的新方法。为了评估和增强 TCES 系统的性能,使用 SAM(System Advisor Model)软件创建了一个基于仿真的优化模型。该优化框架旨在同时确定最佳系统设计,同时考虑太阳能倍数、存储持续时间、平准化度电成本 (LCOE) 以及 ORC 工厂所在地太阳能资源的可用性等因素。本研究主要侧重于实现突尼斯 50 MW ORC 发电厂的最佳整体性能。这项研究的结果表明,拟议的 ORC 工厂有可能每年产生 244.2 GWh-e 的能源输出。这一结果是通过优化的系统设计实现的,该系统的净转换效率为 54.4%,太阳能倍数为 2.2,存储时间为 6.2 小时。此外,平准化度电成本 (LCOE) 降至 11.4 c/kWh 的最小值。该研究的结果强调了将 TCES 系统集成到 ORC 工厂中的重要性,推动了太阳能技术的进步,并为未来 ORC 工厂的发展提供了宝贵的见解。