当前位置:
X-MOL 学术
›
Case Stud. Therm. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Advanced finite element modeling for dual simulations of Carreau-Yasuda fluid subjected to thermal jump using three-dimensional stretching and shrinking surfaces
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-12-09 , DOI: 10.1016/j.csite.2024.105617 M. Adil Sadiq, Haitham M.S. Bahaidarah, H. Khan, A.A. Altawallbeh
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-12-09 , DOI: 10.1016/j.csite.2024.105617 M. Adil Sadiq, Haitham M.S. Bahaidarah, H. Khan, A.A. Altawallbeh
The current problem consists of dual solutions of Carreau Yasuda fluid in flow, mass diffusion and heat energy on 3D expanding and shrinking surfaces. The suspension of tri-hybrid nano-fluid named T i O 2 , S i O 2 , ethylene glycol and aluminum oxide are observed. Heat energy and mass diffusion equations consist of influences of Soret, Dufour, viscous dissipation and heat sink. Tri-hybrid nanofluids have various utilizations in industrial plastics, surgical implants, optical filters, microsensors of biological applications and electronic processes. The variable fluidic properties (thermal conductivity and mass diffusion) have been utilized. The variable magnetic field is observed. Galerkin finite element method with linear shape functions and Galerkin approximations is used to numerically solve normalized conservation equations. Analyses of mesh independence and convergence are performed to guarantee the accuracy of the solutions. The reliability of the findings is confirmed by comparing them to benchmark data. A complicated model in terms of Odes is numerically resolved by finite element methodology which is better given accuracy and convergence. Similarity transformations have been utilized for obtaining Ode’s through PDEs while numerical simulations are achieved through the finite element method. It was experienced that the temperature profile declined with the Dufour number and magnetic number. The opposite trend is experienced in mass diffusion when the Soret number and Schmidt number are enhanced.
中文翻译:
使用三维拉伸和收缩表面对 Carreau-Yasuda 流体进行热跳跃的双重仿真的高级有限元建模
当前的问题包括 Carreau Yasuda 流体在 3D 膨胀和收缩表面上的流动、质量扩散和热能的双重解。观察到名为 TiO2、SiO2、乙二醇和氧化铝的三杂化纳米流体的悬浮液。热能和质量扩散方程由 Soret、Dufour、粘性耗散和散热器的影响组成。三杂化纳米流体在工业塑料、外科植入物、滤光片、生物应用的微传感器和电子过程中有多种用途。利用了可变的流体特性(热导率和质量扩散)。观察到可变磁场。具有线性形函数和 Galerkin 近似的 Galerkin 有限元方法用于数值求解归一化守恒方程。执行网格独立性和收敛性分析以保证解的准确性。通过将研究结果与基准数据进行比较来证实这些发现的可靠性。以 Odes 为单位的复杂模型是通过有限元方法进行数值解析的,该方法在准确性和收敛性方面效果更好。相似变换用于通过 PDE 获得 Ode,而数值模拟则通过有限元方法实现。据经验,温度分布随 Dufour 数和磁数的增加而下降。当 Soret 数和 Schmidt 数增强时,质量扩散会出现相反的趋势。
更新日期:2024-12-09
中文翻译:
使用三维拉伸和收缩表面对 Carreau-Yasuda 流体进行热跳跃的双重仿真的高级有限元建模
当前的问题包括 Carreau Yasuda 流体在 3D 膨胀和收缩表面上的流动、质量扩散和热能的双重解。观察到名为 TiO2、SiO2、乙二醇和氧化铝的三杂化纳米流体的悬浮液。热能和质量扩散方程由 Soret、Dufour、粘性耗散和散热器的影响组成。三杂化纳米流体在工业塑料、外科植入物、滤光片、生物应用的微传感器和电子过程中有多种用途。利用了可变的流体特性(热导率和质量扩散)。观察到可变磁场。具有线性形函数和 Galerkin 近似的 Galerkin 有限元方法用于数值求解归一化守恒方程。执行网格独立性和收敛性分析以保证解的准确性。通过将研究结果与基准数据进行比较来证实这些发现的可靠性。以 Odes 为单位的复杂模型是通过有限元方法进行数值解析的,该方法在准确性和收敛性方面效果更好。相似变换用于通过 PDE 获得 Ode,而数值模拟则通过有限元方法实现。据经验,温度分布随 Dufour 数和磁数的增加而下降。当 Soret 数和 Schmidt 数增强时,质量扩散会出现相反的趋势。