当前位置:
X-MOL 学术
›
Case Stud. Therm. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Exploration of Arrhenius activation energy and thermal radiation on MHD double-diffusive convection of ternary hybrid nanofluid flow over a vertical annulus with discrete heating
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-12-02 , DOI: 10.1016/j.csite.2024.105593 Shilpa B, V. Leela, Irfan Anjum Badruddin, Sarfaraz Kamangar, P. Ganesan, Abdul Azeem Khan
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-12-02 , DOI: 10.1016/j.csite.2024.105593 Shilpa B, V. Leela, Irfan Anjum Badruddin, Sarfaraz Kamangar, P. Ganesan, Abdul Azeem Khan
The primary objective of this article is to examine the effect of discrete heating on MHD double-diffusive convection and thermal radiation of ternary hybrid nanofluid flow heat and mass transfer in a vertical cylindrical annulus along with Arrhenius activation energy and chemical reaction. In this study, the cavity inner wall has two distinct flush-mounted heat sources, while the outer wall is isothermally cooled at a lower temperature. The top and bottom walls are thermally insulated. The ensuing equations that govern the physical framework are solved using the implicit Crank-Nicholson finite difference technique. As the heater advances upward, the flow intensity decreases, leaving a part of the fluid static at the bottom of the cylinder. Because more heat induces high buoyant flow in the annulus, the absolute value of axial velocity and wall temperature rises as the length of the heat source rises. Enhancing the values of activation energy parameter drops the Arrhenius energy function, elevating the pace of the generative chemical process and hence the concentration. Increasing the thermal radiation parameter lowers the surface heat flux while enhancing the nanofluid temperature. The Brownian motion parameter corresponds to the random motion of nanoparticles in a fluid, and this irregular movement augments the collision of nanoparticles with fluid particles, causing the particle's kinetic energy which leads to thermal energy and hence increases temperature. Also, the heat and mass transfer characteristics are forecasted and analyzed by considering the Levenberg–Marquardt backpropagating artificial neural network technique.
中文翻译:
Arrhenius 活化能和热辐射对垂直环上三元杂化纳米流体流 MHD 双扩散对流的探索
本文的主要目的是研究离散加热对垂直圆柱形环中三元杂化纳米流体流动、热和传质的 MHD 双扩散对流和热辐射的影响,以及 Arrhenius 活化能和化学反应。在本研究中,空腔内壁有两个不同的齐平安装热源,而外壁在较低温度下等温冷却。顶部和底部壁是隔热的。随后控制物理框架的方程使用隐式 Crank-Nicholson 有限差分技术求解。随着加热器向上推进,流动强度降低,使一部分流体静止在气缸底部。由于更多的热量会在环空中感应出高浮力流,因此轴向速度和壁温的绝对值会随着热源长度的增加而升高。提高活化能参数的值会降低 Arrhenius 能量函数,从而提高生成化学过程的速度,从而提高浓度。增加热辐射参数会降低表面热通量,同时提高纳米流体温度。布朗运动参数对应于纳米粒子在流体中的随机运动,这种不规则运动增加了纳米粒子与流体粒子的碰撞,导致粒子的动能产生热能,从而升高温度。此外,通过考虑 Levenberg-Marquardt 反向传播人工神经网络技术来预测和分析传热和传质特性。
更新日期:2024-12-02
中文翻译:
Arrhenius 活化能和热辐射对垂直环上三元杂化纳米流体流 MHD 双扩散对流的探索
本文的主要目的是研究离散加热对垂直圆柱形环中三元杂化纳米流体流动、热和传质的 MHD 双扩散对流和热辐射的影响,以及 Arrhenius 活化能和化学反应。在本研究中,空腔内壁有两个不同的齐平安装热源,而外壁在较低温度下等温冷却。顶部和底部壁是隔热的。随后控制物理框架的方程使用隐式 Crank-Nicholson 有限差分技术求解。随着加热器向上推进,流动强度降低,使一部分流体静止在气缸底部。由于更多的热量会在环空中感应出高浮力流,因此轴向速度和壁温的绝对值会随着热源长度的增加而升高。提高活化能参数的值会降低 Arrhenius 能量函数,从而提高生成化学过程的速度,从而提高浓度。增加热辐射参数会降低表面热通量,同时提高纳米流体温度。布朗运动参数对应于纳米粒子在流体中的随机运动,这种不规则运动增加了纳米粒子与流体粒子的碰撞,导致粒子的动能产生热能,从而升高温度。此外,通过考虑 Levenberg-Marquardt 反向传播人工神经网络技术来预测和分析传热和传质特性。