当前位置:
X-MOL 学术
›
Case Stud. Therm. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Computational study and optimization of an inclined U-channel cooling system for triple conductive panels under magnetic field
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-12-09 , DOI: 10.1016/j.csite.2024.105532 Fatih Selimefendigil, Hakan F. Oztop
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2024-12-09 , DOI: 10.1016/j.csite.2024.105532 Fatih Selimefendigil, Hakan F. Oztop
In order to maximize the efficacy of multiple component electronic systems or photovoltaic panels in multiple arrangements, thermal management and cooling system design become crucial. In the present work, a novel cooling system with U-shaped cooling channel for a triple conductive panel system is considered under ternary nano-enhanced magnetic field effects while Galerkin weighed residual finite element method is used as the solution technique. The numerical investigation is carried out for various Hartmann numbers (Ha between 0 and 60), magnetic field inclination (between 0 and 90), side wall inclination of cooling cavity (between 0 and 30), and cavity expansion ratio (between 0.2 and 0.5). At the highest Ha value, panel Pn2 shows a temperature reduction of 52 °C for η = 0 , and an increase of roughly 24 °C for η = 30 . The best magnetic field inclination for the lowest surface temperature varies according to the panels and cooling channels used. The surface temperature variation is 2 °C, 114 °C, and 114 °C for panels Pn1, Pn2, and Pn3, when comparing the best and worst cases. As expansion ratios increase, the average Nu generally drops in cooling channels with both flat (η = 0 ) and inclined (η = 30 ) walls. Based on the first three objectives by using optimization with COBYLA, panels Pn1, Pn2, and Pn3 have minimum temperatures of 30.3 °C, 46.6 °C, and 41.4 °C, respectively. By utilizing different objectives, different panel surface temperatures and performance improvements are achieved.
中文翻译:
磁场下三导电板倾斜 U 型通道冷却系统的计算研究与优化
为了最大限度地提高多组件电子系统或光伏板在多种布置中的功效,热管理和冷却系统设计变得至关重要。在本工作中,在三元纳米增强磁场效应下考虑了一种用于三元纳米增强磁场的具有 U 形冷却通道的新型冷却系统,同时采用 Galerkin 加权残余有限元法作为求解技术。对各种哈特曼数(Ha 在 0 到 60 之间)、磁场倾角(0 到 90 之间)、冷却腔侧壁倾斜度(0 到 30 之间)和腔膨胀比(0.2 到 0.5 之间)进行了数值研究。在最高 Ha 值下,面板 Pn2 显示 η=0 时温度降低 52 °C,η=30 时温度升高约 24 °C。最低表面温度的最佳磁场倾角因所使用的面板和冷却通道而异。在比较最佳和最坏情况时,面板 Pn1、Pn2 和 Pn3 的表面温度变化分别为 2 °C、114 °C 和 114 °C。随着膨胀率的增加,平均 Nu 通常在平坦 (η=0) 和倾斜 (η=30) 壁的冷却管道中下降。基于使用 COBYLA 进行优化的前三个目标,面板 Pn1、Pn2 和 Pn3 的最低温度分别为 30.3 °C、46.6 °C 和 41.4 °C。通过使用不同的物镜,可实现不同的面板表面温度和性能改进。
更新日期:2024-12-09
中文翻译:
磁场下三导电板倾斜 U 型通道冷却系统的计算研究与优化
为了最大限度地提高多组件电子系统或光伏板在多种布置中的功效,热管理和冷却系统设计变得至关重要。在本工作中,在三元纳米增强磁场效应下考虑了一种用于三元纳米增强磁场的具有 U 形冷却通道的新型冷却系统,同时采用 Galerkin 加权残余有限元法作为求解技术。对各种哈特曼数(Ha 在 0 到 60 之间)、磁场倾角(0 到 90 之间)、冷却腔侧壁倾斜度(0 到 30 之间)和腔膨胀比(0.2 到 0.5 之间)进行了数值研究。在最高 Ha 值下,面板 Pn2 显示 η=0 时温度降低 52 °C,η=30 时温度升高约 24 °C。最低表面温度的最佳磁场倾角因所使用的面板和冷却通道而异。在比较最佳和最坏情况时,面板 Pn1、Pn2 和 Pn3 的表面温度变化分别为 2 °C、114 °C 和 114 °C。随着膨胀率的增加,平均 Nu 通常在平坦 (η=0) 和倾斜 (η=30) 壁的冷却管道中下降。基于使用 COBYLA 进行优化的前三个目标,面板 Pn1、Pn2 和 Pn3 的最低温度分别为 30.3 °C、46.6 °C 和 41.4 °C。通过使用不同的物镜,可实现不同的面板表面温度和性能改进。