当前位置:
X-MOL 学术
›
Appl. Phys. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Crater-shaped enrichment of VSi color centers in 4H-SiC using single-pulse near-infrared femtosecond laser processing
Applied Physics Letters ( IF 3.5 ) Pub Date : 2024-12-12 , DOI: 10.1063/5.0231271 Mengzhi Yan, Junlei Zhao, Ying Song, Bing Dong, Yifei Duan, Jianshi Wang, Qingqing Sun, Zongwei Xu
Applied Physics Letters ( IF 3.5 ) Pub Date : 2024-12-12 , DOI: 10.1063/5.0231271 Mengzhi Yan, Junlei Zhao, Ying Song, Bing Dong, Yifei Duan, Jianshi Wang, Qingqing Sun, Zongwei Xu
Currently, silicon vacancy (VSi) color centers in SiC are of significant interest due to their potential applications in quantum sensing and quantum communication. Meanwhile, femtosecond lasers, as a non-thermal processing technique, offer considerable advantages in machining hard and brittle materials, such as SiC. Femtosecond laser processing effectively increases the yield of VSi color centers in bulk materials and forms crater-shaped enriched regions on the surface. However, a notable gap exists in simulation methods to explain the mechanisms behind laser-assisted VSi color center generation. In this work, we develop a three-dimensional molecular dynamics (3D-MD) model using an integral hemi-ellipsoidal shell mathematical framework to simulate the interaction of Gaussian laser beams with bulk materials. Additionally, we calculate the transmittance, absorption coefficient, refractive index, and reflectivity of 4H-SiC. Subsequently, the absorption ratio of a 1030 nm laser in 350 μm thick 4H-SiC material is determined to simulate the energy loss during actual processing. Finally, the study analyzes the movement trajectories of VSi color centers and elucidates the source of VSi on the surface. This analysis explains the enrichment of color centers in the crater-shaped regions formed after laser deposition. Our work presents an effective 3D-MD modeling approach to study the processing mechanisms of laser interaction with semiconductor materials, offering insights into efficient VSi color center creation processes.
中文翻译:
使用单脉冲近红外飞秒激光加工在 4H-SiC 中 VSi 色心的火山口状富集
目前,SiC 中的硅空位 (VSi) 色心因其在量子传感和量子通信中的潜在应用而受到广泛关注。同时,飞秒激光器作为一种非热加工技术,在加工硬脆材料(如 SiC)方面具有相当大的优势。飞秒激光加工有效提高了块状材料中 VSi 色心的产量,并在表面形成火山口状的富集区域。然而,在解释激光辅助 VSi 色心生成背后的机制的仿真方法中存在显着差距。在这项工作中,我们使用积分半椭球壳数学框架开发了一个三维分子动力学 (3D-MD) 模型,以模拟高斯激光束与块状材料的相互作用。此外,我们还计算了 4H-SiC 的透射率、吸收系数、折射率和反射率。随后,确定了 1030 nm 激光器在 350 μm 厚的 4H-SiC 材料中的吸收率,以模拟实际加工过程中的能量损失。最后,该研究分析了 VSi 色心的运动轨迹,并阐明了表面 VSi 的来源。该分析解释了激光沉积后形成的火山口状区域中颜色中心的富集。我们的工作提出了一种有效的 3D-MD 建模方法来研究激光与半导体材料相互作用的加工机制,为高效的 VSi 颜色中心创建过程提供了见解。
更新日期:2024-12-12
中文翻译:
使用单脉冲近红外飞秒激光加工在 4H-SiC 中 VSi 色心的火山口状富集
目前,SiC 中的硅空位 (VSi) 色心因其在量子传感和量子通信中的潜在应用而受到广泛关注。同时,飞秒激光器作为一种非热加工技术,在加工硬脆材料(如 SiC)方面具有相当大的优势。飞秒激光加工有效提高了块状材料中 VSi 色心的产量,并在表面形成火山口状的富集区域。然而,在解释激光辅助 VSi 色心生成背后的机制的仿真方法中存在显着差距。在这项工作中,我们使用积分半椭球壳数学框架开发了一个三维分子动力学 (3D-MD) 模型,以模拟高斯激光束与块状材料的相互作用。此外,我们还计算了 4H-SiC 的透射率、吸收系数、折射率和反射率。随后,确定了 1030 nm 激光器在 350 μm 厚的 4H-SiC 材料中的吸收率,以模拟实际加工过程中的能量损失。最后,该研究分析了 VSi 色心的运动轨迹,并阐明了表面 VSi 的来源。该分析解释了激光沉积后形成的火山口状区域中颜色中心的富集。我们的工作提出了一种有效的 3D-MD 建模方法来研究激光与半导体材料相互作用的加工机制,为高效的 VSi 颜色中心创建过程提供了见解。