Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
AMMI and GGE biplot analysis of seed protein concentration, yield, and 100‐seed weight for chickpea cultivars and breeding lines in the US Pacific Northwest
Crop Science ( IF 2.0 ) Pub Date : 2024-12-12 , DOI: 10.1002/csc2.21417 Priyanka Joshi, George Vandemark
Crop Science ( IF 2.0 ) Pub Date : 2024-12-12 , DOI: 10.1002/csc2.21417 Priyanka Joshi, George Vandemark
Greater global demand for plant‐based protein has made increasing protein concentration in chickpea (Cicer arietinum L.) an important breeding objective. In this study, 17 kabuli chickpea genotypes were evaluated for seed protein concentration (SPC), yield, and 100‐seed weight (HSW). All entries were planted in 2020 and 2021 at four locations in Washington. The mean of all entries for SPC was 20.3%. Genotype (G), location (L), G × year (Y), and L × Y (E) effects were significant for each trait. Year (Y) effects were significant for SPC and yield and accounted for the greatest percentage of total variance for both traits. Additive main effects and multiplicative interactions and genotype (G) main effects and genotype (G) × environment (E) interaction (GGE) biplot analyses were used to identify stable genotypes and to dissect GEI in chickpea. GGE biplot analysis indicated G + G × E effects accounted for 78.69%, 64.01%, and 95.99% of the total variation for SPC, yield, and HSW, respectively. Environments tended to be positively correlated for all three traits and biplot analysis suggests three mega‐environments. Three genotypes, CA0790B0429C, CA13900147C, and Sierra, consistently had high SPC but low yield. Billy Beans was superior for yield. Nash and CA15940057C consistently had high HSW. No genotype had high SPC, yield, and HSW. Significant positive correlations (r > 0.6) were observed between SPC, days to mature, and plant height. It will be challenging to make substantial gains in SPC using only the genotypes evaluated in this study.
中文翻译:
美国太平洋西北部鹰嘴豆品种和育种品系种子蛋白浓度、产量和 100 粒种子重量的 AMMI 和 GGE 双标图
全球对植物蛋白的需求增加,使得提高鹰嘴豆 (Cicer arietinum L.) 的蛋白质浓度成为一个重要的育种目标。在这项研究中,评估了 17 种 kabuli 鹰嘴豆基因型的种子蛋白浓度 (SPC) 、产量和 100 粒种子重 (HSW)。所有参赛作品均于 2020 年和 2021 年在华盛顿的四个地点种植。SPC 的所有条目的平均值为 20.3%。基因型 (G) 、位置 (L) 、 G × 年 (Y) 和 L × Y (E) 效应对每个性状均显著。年份 (Y) 效应对 SPC 和产量显著,并且占两个性状总方差的最大百分比。加性主效应和乘互作用以及基因型 (G) 主效应和基因型 (G) ×环境 (E) 交互作用 (GGE) 双标分析用于鉴定稳定的基因型并剖析鹰嘴豆中的 GEI。GGE 双标图分析表明,G + G × E 效应分别占 SPC 、产量和 HSW 总变异的 78.69% 、 64.01% 和 95.99%。所有三个特征的环境往往呈正相关,双标图分析表明三个巨型环境。三种基因型,CA0790B0429C、CA13900147C 和 Sierra,始终具有高 SPC 但产量低。Billy Beans 的产量更高。Nash 和 CA15940057C 的 HSW 一直很高。没有基因型具有高 SPC 、 产量和 HSW。在 SPC、成熟天数和株高之间观察到显著的正相关 (r > 0.6)。仅使用本研究中评估的基因型在 SPC 中取得实质性收益将具有挑战性。
更新日期:2024-12-12
中文翻译:
美国太平洋西北部鹰嘴豆品种和育种品系种子蛋白浓度、产量和 100 粒种子重量的 AMMI 和 GGE 双标图
全球对植物蛋白的需求增加,使得提高鹰嘴豆 (Cicer arietinum L.) 的蛋白质浓度成为一个重要的育种目标。在这项研究中,评估了 17 种 kabuli 鹰嘴豆基因型的种子蛋白浓度 (SPC) 、产量和 100 粒种子重 (HSW)。所有参赛作品均于 2020 年和 2021 年在华盛顿的四个地点种植。SPC 的所有条目的平均值为 20.3%。基因型 (G) 、位置 (L) 、 G × 年 (Y) 和 L × Y (E) 效应对每个性状均显著。年份 (Y) 效应对 SPC 和产量显著,并且占两个性状总方差的最大百分比。加性主效应和乘互作用以及基因型 (G) 主效应和基因型 (G) ×环境 (E) 交互作用 (GGE) 双标分析用于鉴定稳定的基因型并剖析鹰嘴豆中的 GEI。GGE 双标图分析表明,G + G × E 效应分别占 SPC 、产量和 HSW 总变异的 78.69% 、 64.01% 和 95.99%。所有三个特征的环境往往呈正相关,双标图分析表明三个巨型环境。三种基因型,CA0790B0429C、CA13900147C 和 Sierra,始终具有高 SPC 但产量低。Billy Beans 的产量更高。Nash 和 CA15940057C 的 HSW 一直很高。没有基因型具有高 SPC 、 产量和 HSW。在 SPC、成熟天数和株高之间观察到显著的正相关 (r > 0.6)。仅使用本研究中评估的基因型在 SPC 中取得实质性收益将具有挑战性。