当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Polyester Upcycling to Glycine via Tandem Thermochemical–Electrochemical Catalysis
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-12-12 , DOI: 10.1002/aenm.202404877 Yingxin Ma, Wenxuan Chen, Wenfang Yuan, Zhuan Chen, Mengmeng Du, Lejuan Cai, Wenlong Wang, Mingyang Xing, Bocheng Qiu
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-12-12 , DOI: 10.1002/aenm.202404877 Yingxin Ma, Wenxuan Chen, Wenfang Yuan, Zhuan Chen, Mengmeng Du, Lejuan Cai, Wenlong Wang, Mingyang Xing, Bocheng Qiu
Deconstruction of polyethylene terephthalate (PET) plastics into commodity chemicals such as glycine presents a promising route for waste valorization. However, directly upcycling PET into glycine via thermocatalysis typically requires harsh conditions (e.g., high H2 pressure and elevated temperature) while suffering from limited selectivity and high carbon footprint. Herein, a cascade thermochemical–electrochemical catalysis is developed to exploit glycine from end‐of‐life PET plastics with high selectivity and yield, without the use of hydrogen gas in the entire process. PET is first degraded into oxalic acid via thermochemical oxidative depolymerization using an active and robust HY‐zeolite‐supported Au catalyst under a low O2 pressure (0.3 MPa), and then valorize oxalic acid intermediate into glycine via a two‐step electroreduction over an earth‐abundant TiO2 catalyst. The proposed cascade catalysis approach is resilient to impurities from realistic PET waste streams, and enables a continuous conversion of various PET goods into glycine with an overall yield of 75%. Techno‐economic analysis and life cycle assessment demonstrate that the cascade approach is a cost‐effective and low‐carbon route for PET upcycling. This hybrid thermochemical–electrochemical technology paves a way to leverage cascade catalysis for mitigating plastic pollution while producing high‐value chemicals.
中文翻译:
聚酯通过串联热化学-电化学催化升回收为甘氨酸
将聚对苯二甲酸乙二醇酯 (PET) 塑料解构为甘氨酸等商品化学品提供了一种很有前途的废物价值化途径。然而,通过热催化将 PET 直接升级回收为甘氨酸通常需要恶劣的条件(例如,高 H2 压力和高温),同时存在选择性有限和高碳足迹。在此,开发了一种级联热化学-电化学催化,以高选择性和产率从报废 PET 塑料中利用甘氨酸,整个过程无需使用氢气。PET 首先在低 O2 压力 (0.3 MPa) 下使用活性和坚固的 HY-沸石负载的 Au 催化剂通过热化学氧化解聚降解为草酸,然后在富含地球的 TiO2 催化剂上通过两步电还原将草酸中间体转化为甘氨酸。所提出的复叠催化方法对来自实际 PET 废物流的杂质具有弹性,并能够将各种 PET 产品连续转化为甘氨酸,总产率为 75%。技术经济分析和生命周期评估表明,梯级法是 PET 升级再造的一种经济高效且低碳的路线。这种混合热化学-电化学技术为利用级联催化来减轻塑料污染,同时生产高价值化学品铺平了道路。
更新日期:2024-12-12
中文翻译:
聚酯通过串联热化学-电化学催化升回收为甘氨酸
将聚对苯二甲酸乙二醇酯 (PET) 塑料解构为甘氨酸等商品化学品提供了一种很有前途的废物价值化途径。然而,通过热催化将 PET 直接升级回收为甘氨酸通常需要恶劣的条件(例如,高 H2 压力和高温),同时存在选择性有限和高碳足迹。在此,开发了一种级联热化学-电化学催化,以高选择性和产率从报废 PET 塑料中利用甘氨酸,整个过程无需使用氢气。PET 首先在低 O2 压力 (0.3 MPa) 下使用活性和坚固的 HY-沸石负载的 Au 催化剂通过热化学氧化解聚降解为草酸,然后在富含地球的 TiO2 催化剂上通过两步电还原将草酸中间体转化为甘氨酸。所提出的复叠催化方法对来自实际 PET 废物流的杂质具有弹性,并能够将各种 PET 产品连续转化为甘氨酸,总产率为 75%。技术经济分析和生命周期评估表明,梯级法是 PET 升级再造的一种经济高效且低碳的路线。这种混合热化学-电化学技术为利用级联催化来减轻塑料污染,同时生产高价值化学品铺平了道路。