当前位置:
X-MOL 学术
›
Acc. Chem. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Photoresponsive Chemistries for User-Directed Hydrogel Network Modulation to Investigate Cell–Matrix Interactions
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2024-12-12 , DOI: 10.1021/acs.accounts.4c00548 Monica L. Ohnsorg, Ella A. Hushka, Kristi S. Anseth
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2024-12-12 , DOI: 10.1021/acs.accounts.4c00548 Monica L. Ohnsorg, Ella A. Hushka, Kristi S. Anseth
Synthetic extracellular matrix (ECM) engineering is a highly interdisciplinary field integrating materials and polymer science and engineering, chemistry, cell biology, and medicine to develop innovative strategies to investigate and control cell-matrix interactions. Cellular microenvironments are complex and highly dynamic, changing in response to injury and disease. To capture some of these critical dynamics in vitro, biomaterial matrices have been developed with tailorable properties that can be modulated in situ in the presence of cells. While numerous macromolecules can serve as a basis in the design of a synthetic ECM, our group has exploited multi-arm poly(ethylene glycol) (PEG) macromolecules because of the ease of functionalization, many complementary bio-click reactions to conjugate biological signals, and ultimately, the ability to create well-defined systems to investigate cell-matrix interactions. To date, significant strides have been made in developing bio-responsive and transient synthetic ECM materials that degrade, relax stress, or strain-stiffen in response to cell-mediated stimuli through ECM-cleaving enzymes or integrin-mediated ECM adhesions. However, our group has also designed hydrogels incorporating different photoresponsive moieties, and these moieties facilitate user-defined spatiotemporal modulation of the extracellular microenvironment in vitro. The application of light allows one to break, form, and rearrange network bonds in the presence of cells to alter the biomechanical and biochemical microenvironment to investigate cell-matrix interactions in real-time. Such photoresponsive materials have facilitated fundamental discoveries in the biological pathways related to outside-in signaling, which guide important processes related to tissue development, homeostasis, disease progression, and regeneration.
中文翻译:
用于用户导向水凝胶网络调制的光响应化学研究细胞-基质相互作用
合成细胞外基质 (ECM) 工程是一个高度跨学科的领域,整合了材料和聚合物科学与工程、化学、细胞生物学和医学,以开发创新策略来研究和控制细胞-基质相互作用。细胞微环境是复杂且高度动态的,会随着损伤和疾病的变化而变化。为了在体外捕获其中一些关键动力学,已经开发了具有可定制特性的生物材料基质,这些特性可以在细胞存在下进行原位调节。虽然许多大分子可以作为合成 ECM 设计的基础,但我们小组已经利用了多臂聚乙二醇 (PEG) 大分子,因为它易于功能化,许多互补的生物点击反应来共轭生物信号,并最终能够创建定义明确的系统来研究细胞-基质相互作用。迄今为止,在开发生物响应和瞬态合成 ECM 材料方面取得了重大进展,这些材料通过 ECM 裂解酶或整合素介导的 ECM 粘附响应细胞介导的刺激而降解、松弛应力或应变变硬。然而,我们小组还设计了包含不同光响应部分的水凝胶,这些部分有助于用户在体外对细胞外微环境进行用户定义的时空调节。光的应用允许人们在细胞存在下打破、形成和重新排列网络键,以改变生物力学和生化微环境,从而实时研究细胞与基质的相互作用。 这种光响应材料促进了与由外而内信号相关的生物途径的基础发现,这些途径指导与组织发育、体内平衡、疾病进展和再生相关的重要过程。
更新日期:2024-12-12
中文翻译:
用于用户导向水凝胶网络调制的光响应化学研究细胞-基质相互作用
合成细胞外基质 (ECM) 工程是一个高度跨学科的领域,整合了材料和聚合物科学与工程、化学、细胞生物学和医学,以开发创新策略来研究和控制细胞-基质相互作用。细胞微环境是复杂且高度动态的,会随着损伤和疾病的变化而变化。为了在体外捕获其中一些关键动力学,已经开发了具有可定制特性的生物材料基质,这些特性可以在细胞存在下进行原位调节。虽然许多大分子可以作为合成 ECM 设计的基础,但我们小组已经利用了多臂聚乙二醇 (PEG) 大分子,因为它易于功能化,许多互补的生物点击反应来共轭生物信号,并最终能够创建定义明确的系统来研究细胞-基质相互作用。迄今为止,在开发生物响应和瞬态合成 ECM 材料方面取得了重大进展,这些材料通过 ECM 裂解酶或整合素介导的 ECM 粘附响应细胞介导的刺激而降解、松弛应力或应变变硬。然而,我们小组还设计了包含不同光响应部分的水凝胶,这些部分有助于用户在体外对细胞外微环境进行用户定义的时空调节。光的应用允许人们在细胞存在下打破、形成和重新排列网络键,以改变生物力学和生化微环境,从而实时研究细胞与基质的相互作用。 这种光响应材料促进了与由外而内信号相关的生物途径的基础发现,这些途径指导与组织发育、体内平衡、疾病进展和再生相关的重要过程。