当前位置:
X-MOL 学术
›
Communication Research
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Beyond Mere Algorithm Aversion: Are Judgments About Computer Agents More Variable?
Communication Research ( IF 4.9 ) Pub Date : 2024-12-11 , DOI: 10.1177/00936502241303588 Jürgen Buder, Fritz Becker, Janika Bareiß, Markus Huff
Communication Research ( IF 4.9 ) Pub Date : 2024-12-11 , DOI: 10.1177/00936502241303588 Jürgen Buder, Fritz Becker, Janika Bareiß, Markus Huff
Several studies have reported algorithm aversion, reflected in harsher judgments about computers that commit errors, compared to humans who commit the same errors. Two online studies ( N = 67, N = 252) tested whether similar effects can be obtained with a referential communication task. Participants were tasked with identifying Japanese kanji characters based on written descriptions allegedly coming from a human or an AI source. Crucially, descriptions were either flawed (ambiguous) or not. Both concurrent measures during experimental trials and pre-post questionnaire data about the source were captured. Study 1 revealed patterns of algorithm aversion but also pointed at an opposite effect of “algorithm benefit”: ambiguous descriptions by an AI (vs. human) were evaluated more negatively, but non-ambiguous descriptions were evaluated more positively, suggesting the possibility that judgments about AI sources exhibit larger variability. Study 2 tested this prediction. While human and AI sources did not differ regarding concurrent measures, questionnaire data revealed several patterns that are consistent with the variability explanation.
中文翻译:
超越单纯的算法厌恶:对计算机代理的判断是否更加可变?
几项研究报告了算法厌恶,这反映在与犯相同错误的人类相比,对犯错的计算机的判断更严厉。两项在线研究 ( N = 67, N = 252) 测试了参考际任务是否可以获得类似的效果。参与者的任务是根据据称来自人类或 AI 来源的书面描述来识别日本汉字字符。至关重要的是,描述要么有缺陷(模棱两可),要么没有。捕获了实验试验期间的并发测量和有关来源的后问卷调查数据。研究 1 揭示了算法厌恶的模式,但也指出了 “算法优势 ”的相反效果:人工智能(与人类相比)的模棱两可的描述受到更负面的评价,但非模棱两可的描述受到更积极的评价,这表明对人工智能来源的判断可能表现出更大的可变性。研究 2 测试了这一预测。虽然人类和 AI 来源在并发测量方面没有差异,但问卷数据揭示了与可变性解释一致的几种模式。
更新日期:2024-12-11
中文翻译:
超越单纯的算法厌恶:对计算机代理的判断是否更加可变?
几项研究报告了算法厌恶,这反映在与犯相同错误的人类相比,对犯错的计算机的判断更严厉。两项在线研究 ( N = 67, N = 252) 测试了参考际任务是否可以获得类似的效果。参与者的任务是根据据称来自人类或 AI 来源的书面描述来识别日本汉字字符。至关重要的是,描述要么有缺陷(模棱两可),要么没有。捕获了实验试验期间的并发测量和有关来源的后问卷调查数据。研究 1 揭示了算法厌恶的模式,但也指出了 “算法优势 ”的相反效果:人工智能(与人类相比)的模棱两可的描述受到更负面的评价,但非模棱两可的描述受到更积极的评价,这表明对人工智能来源的判断可能表现出更大的可变性。研究 2 测试了这一预测。虽然人类和 AI 来源在并发测量方面没有差异,但问卷数据揭示了与可变性解释一致的几种模式。