当前位置:
X-MOL 学术
›
Communication Research
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Network Agenda Setting, or Networked Framing? (Non)correspondence Between User and Right-Wing Media Semantic Networks on YouTube
Communication Research ( IF 4.9 ) Pub Date : 2024-12-11 , DOI: 10.1177/00936502241300803 Yuan Hsiao, Matthew Hindman
Communication Research ( IF 4.9 ) Pub Date : 2024-12-11 , DOI: 10.1177/00936502241300803 Yuan Hsiao, Matthew Hindman
How does media shape and reflect right-wing rhetoric in the U.S.? Theories of media effects have moved towards networked approaches to agenda setting and framing, but it remains uncertain how issue attributes or frames emerge in the U.S. media ecosystem in which users themselves can shape political rhetoric through discussion on social media. We provide the largest test to date of the different predictions of networked agenda setting (NAS) theory and networked framing, through a semantic network analysis of all 19,112 video transcripts and 661,958,464 user comments posted on the YouTube channels of four major U.S. conservative media outlets between January 2019 and March 2021. Both overall, and within key topics like COVID-19 or Black Lives Matter, we find that user comments diverge strongly from video transcripts, with users repeatedly introducing associations, emotionally charged rhetoric, and conspiracy theories not originally present. Our results challenge claims by network agenda setting scholars that “objects and attributes can be transferred simultaneously in bundles” from the media agenda to the public agenda, but are more consistent with scholarship on networked framing. We argue that future work should strive to synthesize both approaches.
中文翻译:
网络议程设置,还是网络框架?YouTube 上用户与右翼媒体语义网络之间的(非)对应关系
媒体如何塑造和反映美国的右翼言论?媒体效应理论已经转向网络化的议程设置和框架方法,但在美国媒体生态系统中,用户自己可以通过社交媒体上的讨论来塑造政治言论,问题属性或框架如何出现仍然不确定。我们通过对 2019 年 1 月至 2021 年 3 月期间在美国四家主要保守派媒体的 YouTube 频道上发布的所有 19,112 个视频记录和 661,958,464 条用户评论的语义网络分析,提供了迄今为止对网络议程设置 (NAS) 理论和网络框架的不同预测的最大测试。总体而言,在 COVID-19 或 Black Lives Matter 等关键主题中,我们发现用户评论与视频转录内容大相径庭,用户反复介绍联想、情绪化的言论和最初不存在的阴谋论。我们的结果挑战了网络议程设置学者的说法,即“对象和属性可以同时成捆地转移”从媒体议程到公共议程,但与网络框架的学术研究更一致。我们认为,未来的工作应该努力综合这两种方法。
更新日期:2024-12-11
中文翻译:
网络议程设置,还是网络框架?YouTube 上用户与右翼媒体语义网络之间的(非)对应关系
媒体如何塑造和反映美国的右翼言论?媒体效应理论已经转向网络化的议程设置和框架方法,但在美国媒体生态系统中,用户自己可以通过社交媒体上的讨论来塑造政治言论,问题属性或框架如何出现仍然不确定。我们通过对 2019 年 1 月至 2021 年 3 月期间在美国四家主要保守派媒体的 YouTube 频道上发布的所有 19,112 个视频记录和 661,958,464 条用户评论的语义网络分析,提供了迄今为止对网络议程设置 (NAS) 理论和网络框架的不同预测的最大测试。总体而言,在 COVID-19 或 Black Lives Matter 等关键主题中,我们发现用户评论与视频转录内容大相径庭,用户反复介绍联想、情绪化的言论和最初不存在的阴谋论。我们的结果挑战了网络议程设置学者的说法,即“对象和属性可以同时成捆地转移”从媒体议程到公共议程,但与网络框架的学术研究更一致。我们认为,未来的工作应该努力综合这两种方法。