Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Nanopaper Integrated Smart Device: An Opto-Electrochemical Biosensor for Real-Time Dual On-Field Detection of Organophosphorus Pesticides
ACS Sensors ( IF 8.2 ) Pub Date : 2024-12-12 , DOI: 10.1021/acssensors.4c02000 Amir Reza Sharifi, Vincenzo Mazzaracchio, Leonardo Duranti, Ludovica Gullo, Simone Brannetti, Mohammad Peyravian, Mohammad Ali Kiani, Fabiana Arduini
ACS Sensors ( IF 8.2 ) Pub Date : 2024-12-12 , DOI: 10.1021/acssensors.4c02000 Amir Reza Sharifi, Vincenzo Mazzaracchio, Leonardo Duranti, Ludovica Gullo, Simone Brannetti, Mohammad Peyravian, Mohammad Ali Kiani, Fabiana Arduini
The frequent and excessive use of organophosphorus pesticides in the agriculture industry raises persistent concerns regarding their environmental protection and public health implications. Addressing these issues requires the development of affordable and reliable sensing platforms for on-field monitoring to mitigate their adverse impacts promptly. This study utilizes nanocellulose papers (bacterial and TEMPO-oxidized) combined with butyrylcholinesterase to create a novel reagent-free and orthogonal nanobioplatform featuring smart opto-electrochemical dual outputs. An integrated nano-PAD, preloaded with enzymes and enzymatic substrates, is fabricated using wax-printing and screen-printing technologies. The nano-PAD measures opto-electroactive products, specifically indoxyl and thiocholine, whose concentrations correlate directly with the enzymatic inhibition caused by paraoxon, used as the organophosphate model. To enhance user convenience and meet the requirements for smart real-time point-of-need detection, integration of the nano-PAD with a smartphone-operated miniaturized potentiostat and a self-developed portable smart optical reader is achieved. The developed bioanalytical platform, further supported by a self-developed Android application, enables accurate and efficient quantification of dual signals in real time. The system covers a wide detection range of paraoxon (20–100 ppb) and demonstrates reliable recovery levels (ranging from 98 to 107%) in a real matrix, specifically wastewater. Given these demonstrated capabilities, this innovative biosensing strategy holds substantial potential for practical application in environmental surveillance, facilitating timely and informed environmental management decisions, particularly in resource-limited settings where traditional analytical tools are inaccessible.
中文翻译:
纳米纸集成智能设备:一种用于有机磷农药实时双现场检测的光电化学生物传感器
农业中频繁和过度使用有机磷农药引起了人们对其环境保护和公共卫生影响的持续担忧。解决这些问题需要开发经济实惠且可靠的现场监测传感平台,以迅速减轻其不利影响。本研究利用纳米纤维素纸(细菌和 TEMPO 氧化)与丁酰胆碱酯酶相结合,创建了一个具有智能光电化学双输出的新型无试剂和正交纳米生物平台。使用蜡印和丝网印刷技术制造了一个预装酶和酶底物的集成纳米 PAD。nano-PAD 测量光电活性产物,特别是吲哚基和硫胆碱,其浓度与对氧磷引起的酶抑制直接相关,用作有机磷酸盐模型。为提高用户便利性并满足智能实时需求点检测的要求,实现了 nano-PAD 与智能手机操作的小型恒电位仪和自主开发的便携式智能光学阅读器的集成。开发的生物分析平台由自主开发的 Android 应用程序进一步支持,能够实时准确、高效地定量双信号。该系统涵盖了广泛的对氧克检测范围 (20–100 ppb),并在真实基质(特别是废水)中表现出可靠的回收率(范围为 98% 至 107%)。 鉴于这些已证明的能力,这种创新的生物传感策略在环境监测中具有巨大的实际应用潜力,有助于及时和明智的环境管理决策,尤其是在传统分析工具无法获得的资源有限环境中。
更新日期:2024-12-12
中文翻译:
纳米纸集成智能设备:一种用于有机磷农药实时双现场检测的光电化学生物传感器
农业中频繁和过度使用有机磷农药引起了人们对其环境保护和公共卫生影响的持续担忧。解决这些问题需要开发经济实惠且可靠的现场监测传感平台,以迅速减轻其不利影响。本研究利用纳米纤维素纸(细菌和 TEMPO 氧化)与丁酰胆碱酯酶相结合,创建了一个具有智能光电化学双输出的新型无试剂和正交纳米生物平台。使用蜡印和丝网印刷技术制造了一个预装酶和酶底物的集成纳米 PAD。nano-PAD 测量光电活性产物,特别是吲哚基和硫胆碱,其浓度与对氧磷引起的酶抑制直接相关,用作有机磷酸盐模型。为提高用户便利性并满足智能实时需求点检测的要求,实现了 nano-PAD 与智能手机操作的小型恒电位仪和自主开发的便携式智能光学阅读器的集成。开发的生物分析平台由自主开发的 Android 应用程序进一步支持,能够实时准确、高效地定量双信号。该系统涵盖了广泛的对氧克检测范围 (20–100 ppb),并在真实基质(特别是废水)中表现出可靠的回收率(范围为 98% 至 107%)。 鉴于这些已证明的能力,这种创新的生物传感策略在环境监测中具有巨大的实际应用潜力,有助于及时和明智的环境管理决策,尤其是在传统分析工具无法获得的资源有限环境中。