Nature ( IF 50.5 ) Pub Date : 2024-12-11 , DOI: 10.1038/s41586-024-08280-5 Fuchu He, Ruedi Aebersold, Mark S. Baker, Xiuwu Bian, Xiaochen Bo, Daniel W. Chan, Cheng Chang, Luonan Chen, Xiangmei Chen, Yu-Ju Chen, Heping Cheng, Ben C. Collins, Fernando Corrales, Jürgen Cox, Weinan E, Jennifer E. Van Eyk, Jia Fan, Pouya Faridi, Daniel Figeys, George Fu Gao, Wen Gao, Zu-Hua Gao, Keisuke Goda, Wilson Wen Bin Goh, Dongfeng Gu, Changjiang Guo, Tiannan Guo, Yuezhong He, Albert J. R. Heck, Henning Hermjakob, Tony Hunter, Narayanan Gopalakrishna Iyer, Ying Jiang, Connie R. Jimenez, Lokesh Joshi, Neil L. Kelleher, Ming Li, Yang Li, Qingsong Lin, Cui Hua Liu, Fan Liu, Guang-Hui Liu, Yansheng Liu, Zhihua Liu, Teck Yew Low, Ben Lu, Matthias Mann, Anming Meng, Robert L. Moritz, Edouard Nice, Guang Ning, Gilbert S. Omenn, Christopher M. Overall, Giuseppe Palmisano, Yaojin Peng, Charles Pineau, Terence Chuen Wai Poon, Anthony W. Purcell, Jie Qiao, Roger R. Reddel, Phillip J. Robinson, Paola Roncada, Chris Sander, Jiahao Sha, Erwei Song, Sanjeeva Srivastava, Aihua Sun, Siu Kwan Sze, Chao Tang, Liujun Tang, Ruijun Tian, Juan Antonio Vizcaíno, Chanjuan Wang, Chen Wang, Xiaowen Wang, Xinxing Wang, Yan Wang, Tobias Weiss, Mathias Wilhelm, Robert Winkler, Bernd Wollscheid, Limsoon Wong, Linhai Xie, Wei Xie, Tao Xu, Tianhao Xu, Liying Yan, Jing Yang, Xiao Yang, John Yates, Tao Yun, Qiwei Zhai, Bing Zhang, Hui Zhang, Lihua Zhang, Lingqiang Zhang, Pingwen Zhang, Yukui Zhang, Yu Zi Zheng, Qing Zhong, Yunping Zhu
The human body contains trillions of cells, classified into specific cell types, with diverse morphologies and functions. In addition, cells of the same type can assume different states within an individual’s body during their lifetime. Understanding the complexities of the proteome in the context of a human organism and its many potential states is a necessary requirement to understanding human biology, but these complexities can neither be predicted from the genome, nor have they been systematically measurable with available technologies. Recent advances in proteomic technology and computational sciences now provide opportunities to investigate the intricate biology of the human body at unprecedented resolution and scale. Here we introduce a big-science endeavour called π-HuB (proteomic navigator of the human body). The aim of the π-HuB project is to (1) generate and harness multimodality proteomic datasets to enhance our understanding of human biology; (2) facilitate disease risk assessment and diagnosis; (3) uncover new drug targets; (4) optimize appropriate therapeutic strategies; and (5) enable intelligent healthcare, thereby ushering in a new era of proteomics-driven phronesis medicine. This ambitious mission will be implemented by an international collaborative force of multidisciplinary research teams worldwide across academic, industrial and government sectors.
中文翻译:
π-HuB:人体的蛋白质组学导航器
人体包含数万亿个细胞,分为特定的细胞类型,具有不同的形态和功能。此外,相同类型的细胞在其一生中可以在个体体内呈现不同的状态。在人类有机体及其许多潜在状态的背景下了解蛋白质组的复杂性是理解人类生物学的必要要求,但这些复杂性既无法从基因组中预测,也无法用现有技术系统地测量。蛋白质组学技术和计算科学的最新进展现在为以前所未有的分辨率和规模研究人体复杂的生物学提供了机会。在这里,我们介绍一项名为 π-HuB(人体蛋白质组学导航器)的大科学努力。π-HuB 项目的目标是 (1) 生成和利用多模态蛋白质组学数据集来增强我们对人类生物学的理解;(2) 促进疾病风险评估和诊断;(3) 发现新的药物靶点;(4) 优化适当的治疗策略;(5) 实现智能医疗保健,从而开创蛋白质组学驱动的 phronesis 医学新时代。这一雄心勃勃的使命将由全球学术、工业和政府部门的多学科研究团队组成的国际合作团队来实施。