当前位置: X-MOL 学术Commun. Nonlinear Sci. Numer. Simul. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stabilizer-free weak Galerkin method and its optimal [formula omitted] error estimates for the time-dependent Poisson—Nernst–Planck problem
Communications in Nonlinear Science and Numerical Simulation ( IF 3.4 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.cnsns.2024.108449
Wenjuan Li, Fuzheng Gao, Xiaoming He

This paper concerns a backward Euler stabilizer-free weak Galerkin finite element method (SFWG-FEM) for the time-dependent Poisson–Nernst–Planck (TD-PNP) problem. The scheme we propose utilizes spaces Pk(K), Pk(e), [Pj(K)]2 to approximate the interior, edge, and discrete weak gradient spaces on each element K and edge eK, respectively. The proposed method is in a simple format similar to the regular finite element method, compatible with polygonal meshes, flexible in approximation function space, and unconditionally stable in time. Based on a rigorous analysis of a weak Galerkin Ritz projection error, which is derived by a dual problem, the superconvergence of the Ritz projection error estimates in energy norm results in optimal L2 error estimates. Several numerical experiments are conducted to demonstrate our theoretical findings, where Oseen iteration is utilized for the nonlinear coupling terms.

中文翻译:


无稳定器弱伽辽金法及其对瞬态泊松-能斯特-普朗克问题的最优 [公式省略] 误差估计



本文涉及一种后向欧拉无稳定器弱伽辽金有限元法 (SFWG-FEM) 用于瞬态泊松-能斯特-普朗克 (TD-PNP) 问题。我们提出的方案利用空间 Pk(K)、Pk(e)、[Pj(K)]2 分别近似每个元素 K 和边 e⊂∂K 上的内部、边缘和离散弱梯度空间。所提出的方法采用类似于常规有限元方法的简单格式,与多边形网格兼容,在近似函数空间上灵活,在时间上无条件稳定。基于对对偶问题推导的弱 Galerkin Ritz 投影误差的严格分析,能量范数中 Ritz 投影误差估计的超收敛导致了最优的 L2 误差估计。进行了几个数值实验来证明我们的理论发现,其中 Oseen 迭代用于非线性耦合项。
更新日期:2024-11-19
down
wechat
bug