当前位置:
X-MOL 学术
›
Finance Research Letters
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Predicting FX market movements using GAN with limit order event data
Finance Research Letters ( IF 7.4 ) Pub Date : 2024-11-29 , DOI: 10.1016/j.frl.2024.106527 Kexin Peng, Hitoshi Iima, Yoshihiro Kitamura
Finance Research Letters ( IF 7.4 ) Pub Date : 2024-11-29 , DOI: 10.1016/j.frl.2024.106527 Kexin Peng, Hitoshi Iima, Yoshihiro Kitamura
This study employs generative adversarial network (GAN) models to forecast 5-minute foreign exchange (FX) rate returns. Compared to the Long Short-Term Memory (LSTM) model, GAN demonstrates a significant economic advantage. Notably, the GAN that incorporates limit order events outperforms those that consider liquidity and market order variables. Additionally, the GAN with limit orders achieves tangible economic gains. Consequently, this study provides empirical evidence that adds to the existing literature on market structure regarding informed trading through limit orders.
中文翻译:
使用 GAN 和限价单事件数据预测外汇市场走势
本研究采用生成对抗网络 (GAN) 模型来预测 5 分钟外汇 (FX) 汇率回报。与长短期记忆 (LSTM) 模型相比,GAN 表现出显着的经济优势。值得注意的是,包含限价单事件的 GAN 优于考虑流动性和市价单变量的 GAN。此外,带有限价单的 GAN 实现了有形的经济收益。因此,本研究提供了经验证据,增加了关于通过限价单进行知情交易的现有市场结构文献。
更新日期:2024-11-29
中文翻译:
使用 GAN 和限价单事件数据预测外汇市场走势
本研究采用生成对抗网络 (GAN) 模型来预测 5 分钟外汇 (FX) 汇率回报。与长短期记忆 (LSTM) 模型相比,GAN 表现出显着的经济优势。值得注意的是,包含限价单事件的 GAN 优于考虑流动性和市价单变量的 GAN。此外,带有限价单的 GAN 实现了有形的经济收益。因此,本研究提供了经验证据,增加了关于通过限价单进行知情交易的现有市场结构文献。