当前位置:
X-MOL 学术
›
Phys. Chem. Chem. Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enhancing the stability and performance of Ni-rich cathode materials through Ta doping: a combined theoretical and experimental study
Physical Chemistry Chemical Physics ( IF 2.9 ) Pub Date : 2024-12-11 , DOI: 10.1039/d4cp03911d Frederike Monsees, Casimir Misiewicz, Mert Dalkilic, Diddo Diddens, Andreas Heuer
Physical Chemistry Chemical Physics ( IF 2.9 ) Pub Date : 2024-12-11 , DOI: 10.1039/d4cp03911d Frederike Monsees, Casimir Misiewicz, Mert Dalkilic, Diddo Diddens, Andreas Heuer
As the demand for high-energy batteries to power electric vehicles continues to grow, Ni-rich cathode materials have emerged as promising candidates due to their high capacity. However, these materials are prone to rapid degradation under increased voltages, posing significant challenges for their long-term stability and safety. In this study, we investigate the effects of tantalum (Ta) doping on the performance and stability of LiNi0.80Mn0.1Co0.1O2 (NMC811) cathode materials. Using a combined theoretical and experimental approach, we employ density functional theory (DFT) and cluster expansion models to analyze the electronic structure and oxygen vacancy formation enthalpy in Ta-doped NMC811. Experimental validation is conducted using cycling and gas measurements via on-line electrochemical mass spectrometry (OEMS) on in-house synthesized cathode active materials. Both theoretical and experimental approaches show an improvement in oxygen binding due to tantalum doping, with the DFT results highlighting the impact of Ni4+ concentration on the proximity of the vacancy. Our results suggest that Ta doping inhibits the formation of oxygen vacancy-induced side phases, reducing cracking and enhancing the longevity and safety of Ni-rich cathodes.
中文翻译:
通过 Ta 掺杂增强富镍正极材料的稳定性和性能:理论与实验相结合的研究
随着电动汽车对高能电池的需求不断增长,富镍正极材料因其高容量而成为有前途的候选材料。然而,这些材料在电压增加的情况下容易快速降解,对其长期稳定性和安全性构成重大挑战。在本研究中,我们研究了钽 (Ta) 掺杂对 LiNi0.80Mn0.1Co0.1O2 (NMC811) 正极材料的性能和稳定性的影响。采用理论和实验相结合的方法,我们采用密度泛函理论 (DFT) 和团簇展开模型来分析 Ta 掺杂 NMC811 中的电子结构和氧空位形成焓。通过在线电化学质谱 (OEMS) 对内部合成的阴极活性材料进行循环和气体测量,进行实验验证。理论和实验方法都表明,由于钽掺杂,氧结合得到改善,DFT 结果突出了 Ni4+ 浓度对空位接近度的影响。我们的结果表明,Ta 掺杂抑制了氧空位诱导的侧相的形成,减少了开裂并提高了富镍阴极的寿命和安全性。
更新日期:2024-12-11
中文翻译:
通过 Ta 掺杂增强富镍正极材料的稳定性和性能:理论与实验相结合的研究
随着电动汽车对高能电池的需求不断增长,富镍正极材料因其高容量而成为有前途的候选材料。然而,这些材料在电压增加的情况下容易快速降解,对其长期稳定性和安全性构成重大挑战。在本研究中,我们研究了钽 (Ta) 掺杂对 LiNi0.80Mn0.1Co0.1O2 (NMC811) 正极材料的性能和稳定性的影响。采用理论和实验相结合的方法,我们采用密度泛函理论 (DFT) 和团簇展开模型来分析 Ta 掺杂 NMC811 中的电子结构和氧空位形成焓。通过在线电化学质谱 (OEMS) 对内部合成的阴极活性材料进行循环和气体测量,进行实验验证。理论和实验方法都表明,由于钽掺杂,氧结合得到改善,DFT 结果突出了 Ni4+ 浓度对空位接近度的影响。我们的结果表明,Ta 掺杂抑制了氧空位诱导的侧相的形成,减少了开裂并提高了富镍阴极的寿命和安全性。