Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Nickel-oxide embedded laser-induced graphene for high-performance supercapacitors
Nanoscale ( IF 5.8 ) Pub Date : 2024-12-11 , DOI: 10.1039/d4nr03227f Hani Porat, Aneena Lal, Asmita Dutta, Manish Kumar Yadav, Divya Catherin Sesu, Refael Minnes, Arie Borenstein
Nanoscale ( IF 5.8 ) Pub Date : 2024-12-11 , DOI: 10.1039/d4nr03227f Hani Porat, Aneena Lal, Asmita Dutta, Manish Kumar Yadav, Divya Catherin Sesu, Refael Minnes, Arie Borenstein
This study explores the fabrication of nickel-oxide-embedded laser-induced graphene and its application in high-performance supercapacitors. Supercapacitors are critical for various applications due to their high power density and long cycle life. Nevertheless, they suffer from lower energy density compared to batteries. By embedding redox-active nickel oxide (NiO) nanoparticles into graphene electrodes, we enhance the energy density of these supercapacitors while maintaining high power. The NiO nanoparticles were synthesized at the nanoscale and embedded into graphene oxide (GO) using a one-step laser processing technique, resulting in a composite material with improved electrochemical properties. High specific capacitance for a discharge current density of 0.25 A g−1 is 1420 F g−1 in 6 M KOH. Moreover, by tracking the crystallographic X-ray diffraction (XRD) pattern of the composite electrodes upon electrochemical cycling, we identified the phase transition from NiO to Ni(OH)2. Our results verify the advantages of laser processing to incorporating highly-dispersed NiO nanoparticles into graphene films, which significantly enhances the electrochemical performance of supercapacitors, offering a promising approach for developing high-energy and high-power energy storage devices.
中文翻译:
用于高性能超级电容器的氧化镍嵌入式激光诱导石墨烯
本研究探讨了镍氧化物嵌入式激光诱导石墨烯的制备及其在高性能超级电容器中的应用。超级电容器具有高功率密度和长循环寿命,因此对各种应用至关重要。然而,与电池相比,它们的能量密度较低。通过将氧化还原活性氧化镍 (NiO) 纳米颗粒嵌入石墨烯电极中,我们提高了这些超级电容器的能量密度,同时保持了高功率。NiO 纳米颗粒在纳米尺度上合成,并使用一步激光加工技术嵌入到氧化石墨烯 (GO) 中,从而得到具有改进电化学性能的复合材料。对于 0.25 A g-1 的放电电流密度,高比电容为 1420 F g-1,在 6 M KOH 中。此外,通过跟踪复合电极在电化学循环中的晶体学 X 射线衍射 (XRD) 图谱,我们确定了从 NiO 到 Ni(OH)2 的相变。我们的结果验证了激光加工将高度分散的 NiO 纳米颗粒掺入石墨烯薄膜中的优势,这显着提高了超级电容器的电化学性能,为开发高能量和高功率储能器件提供了一种有前途的方法。
更新日期:2024-12-11
中文翻译:
用于高性能超级电容器的氧化镍嵌入式激光诱导石墨烯
本研究探讨了镍氧化物嵌入式激光诱导石墨烯的制备及其在高性能超级电容器中的应用。超级电容器具有高功率密度和长循环寿命,因此对各种应用至关重要。然而,与电池相比,它们的能量密度较低。通过将氧化还原活性氧化镍 (NiO) 纳米颗粒嵌入石墨烯电极中,我们提高了这些超级电容器的能量密度,同时保持了高功率。NiO 纳米颗粒在纳米尺度上合成,并使用一步激光加工技术嵌入到氧化石墨烯 (GO) 中,从而得到具有改进电化学性能的复合材料。对于 0.25 A g-1 的放电电流密度,高比电容为 1420 F g-1,在 6 M KOH 中。此外,通过跟踪复合电极在电化学循环中的晶体学 X 射线衍射 (XRD) 图谱,我们确定了从 NiO 到 Ni(OH)2 的相变。我们的结果验证了激光加工将高度分散的 NiO 纳米颗粒掺入石墨烯薄膜中的优势,这显着提高了超级电容器的电化学性能,为开发高能量和高功率储能器件提供了一种有前途的方法。