当前位置: X-MOL 学术Mater. Today Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Plasmonic photothermal superhydrophobic surface with nanotubes thermal insulating blanket for anti-icing and anti-frosting under weak light illumination
Materials Today Physics ( IF 10.0 ) Pub Date : 2024-12-11 , DOI: 10.1016/j.mtphys.2024.101625
Huamei Zhong, Chengjie Xiang, Zhifeng Hu, Xinge Yang, Haoran Liu, Ruzhu Wang

Accumulation of ice and frost poses a substantial threat to the safe and efficient operation of transportation and energy infrastructures, such as aircraft, vessels, and wind turbines. While photothermal superhydrophobic surfaces have emerged as a promising solution for anti- and de-icing, the high thermal conductivity of metal substrates leads to large heat losses that limits the thermal efficiency of photothermal surfaces. In addition, the hard and brittle micro-nanostructure is an important obstacle limiting the practical application of superhydrophobic surfaces. Herein, the flexible poly(vinylidene fluoride) (PVDF) is employed to stabilize the rigid plasmonic titanium nitride (TiN) particles, and then a micro-hexagonal network structure containing fibers and knots is constructed on the surface of insulated titania nanotube layer by electrospinning. This photothermal superhydrophobic layer achieves a remarkable temperature increase of 75.3 °C under 1 Sun illumination, driven by high solar absorption, plasmon resonance, and enhanced thermal insulation. The surface exhibits excellent superhydrophobicity, enabling superior anti-icing and anti-frosting performance, even under reduced illumination (0.35 Sun). At −23 °C, the surface remains frost-free for up to 9 h and can melt ice within 300 s. This design offers significant potential for applications in transportation, energy systems, and other critical infrastructures.

中文翻译:


等离子体光热超疏水表面,带有纳米管隔热毯,用于在弱光照明下防结冰和防结霜



冰霜的积累对飞机、船舶和风力涡轮机等交通和能源基础设施的安全和高效运行构成重大威胁。虽然光热超疏水表面已成为一种很有前途的防冰和除冰解决方案,但金属基材的高导热性会导致较大的热损失,从而限制光热表面的热效率。此外,硬脆的微纳结构是限制超疏水表面实际应用的重要障碍。本文采用柔性聚偏二氟乙烯 (PVDF) 稳定刚性等离子体氮化钛 (TiN) 颗粒,然后通过静电纺丝在绝缘二氧化钛纳米管层表面构建包含纤维和结的微六方网络结构。这种光热超疏水层在 1 个太阳光照下实现了 75.3 °C 的显着温度升高,这得益于高太阳吸收、等离子体共振和增强的隔热性。该表面表现出优异的超疏水性,即使在降低光照(0.35 Sun)的情况下也能实现卓越的防结冰和防结霜性能。在 -23 °C 时,表面保持无霜长达 9 小时,并且可以在 300 秒内融化冰。这种设计为交通、能源系统和其他关键基础设施的应用提供了巨大的潜力。
更新日期:2024-12-11
down
wechat
bug