当前位置:
X-MOL 学术
›
Energy Storage Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ultrafast cathode assembled using small reduced graphene oxide sheets enables a 2000 C rate supercapacitor with high energy density
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-12-11 , DOI: 10.1016/j.ensm.2024.103951 Mengzhao Yang, Huayan Liu, Chenxin Zhou, Haoyang Chen, Xin Chen, Qinglei Liu, Jiajun Gu
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-12-11 , DOI: 10.1016/j.ensm.2024.103951 Mengzhao Yang, Huayan Liu, Chenxin Zhou, Haoyang Chen, Xin Chen, Qinglei Liu, Jiajun Gu
To realize ultrafast supercapacitors, a series of ultrahigh-rate (≥1000 mV s−1) anodes that break a well-known “energy vs. power dilemma” in aqueous electrolytes have been successfully developed over the past five years. However, their matching cathodes are still limited by slow ion transport dynamics and oxidation. Here, we report a series of hydrated films that comprise small sheets of reduced graphene oxide (SSs−rGO, <100 nm in average lateral size) and feature short interlayered pathways (∼100 nm) for rapid ion transport and high oxidation resistance. As the first ultrahigh-rate cathode with areal capacitance (Ca) satisfying an industrial requirement (>0.6 F cm−2), the SSs−rGO electrode (5.0 mg cm−2) delivers a Ca of 0.61 F cm−2 and a gravimetric capacitance of 123 F g−1 at an ultrahigh-rate of 3000 mV s−1. Combining with a Ti3C2Tx anode, the cathode enables a 1.8 V ultrafast aqueous supercapacitor that delivers energy densities of 0.14 and 0.09 mWh cm−2 for discharges in 1.79 and 0.97 s (∼2000 and 3700 C rate), respectively. These values double (at 2000 C) and almost ten-fold (at 3700 C) those of the ever-reported supercapacitors operating at the corresponding rates. The present strategy paves a road to ultrafast (>1000 C) and high-energy-density supercapacitors, by which energy charge/discharge can finish within 3.6 s.
中文翻译:
使用小型还原氧化石墨烯片组装的超快阴极可实现具有高能量密度的 2000 C 倍率超级电容器
为了实现超快超级电容器,在过去五年中成功开发了一系列超高倍率 (≥1000 mV s −1 ) 阳极,打破了水性电解质中众所周知的“能量与功率困境”。然而,它们的匹配阴极仍然受到缓慢离子传输动力学和氧化的限制。在这里,我们报道了一系列水合薄膜,这些薄膜由小片还原氧化石墨烯 (SSs−rGO,平均横向尺寸为 <100 nm) 组成,并具有短的层间通路 (∼100 nm),可实现快速离子传输和高抗氧化性。作为第一个具有满足工业要求 (>0.6 F cm −2 ) 的面电容 (C a ) 的超高倍率阴极,SSs−rGO 电极 (5.0 mg cm −2 ) 的 C a 为 0.61 F cm −2 以及 123 F g −1 的重量电容,以 3000 mV s −1 的超高速率。该阴极与 Ti 3 C 2 T x 阳极相结合,可实现 1.8 V 超快水系超级电容器,该电容器可在 1.79 秒和 0.97 秒(∼2000 和 3700 C 速率)内分别提供 0.14 和 0.09 mWh cm −2 的能量密度。这些值是以前报道的以相应速率运行的超级电容器的两倍(在 2000 C 时)和几乎十倍(在 3700 C 时)。目前的策略为超快 (>1000 C) 和高能量密度超级电容器铺平了道路,通过该超级电容器,能量充电/放电可以在 3.6 s 内完成。
更新日期:2024-12-15
中文翻译:
使用小型还原氧化石墨烯片组装的超快阴极可实现具有高能量密度的 2000 C 倍率超级电容器
为了实现超快超级电容器,在过去五年中成功开发了一系列超高倍率 (≥1000 mV s −1 ) 阳极,打破了水性电解质中众所周知的“能量与功率困境”。然而,它们的匹配阴极仍然受到缓慢离子传输动力学和氧化的限制。在这里,我们报道了一系列水合薄膜,这些薄膜由小片还原氧化石墨烯 (SSs−rGO,平均横向尺寸为 <100 nm) 组成,并具有短的层间通路 (∼100 nm),可实现快速离子传输和高抗氧化性。作为第一个具有满足工业要求 (>0.6 F cm −2 ) 的面电容 (C a ) 的超高倍率阴极,SSs−rGO 电极 (5.0 mg cm −2 ) 的 C a 为 0.61 F cm −2 以及 123 F g −1 的重量电容,以 3000 mV s −1 的超高速率。该阴极与 Ti 3 C 2 T x 阳极相结合,可实现 1.8 V 超快水系超级电容器,该电容器可在 1.79 秒和 0.97 秒(∼2000 和 3700 C 速率)内分别提供 0.14 和 0.09 mWh cm −2 的能量密度。这些值是以前报道的以相应速率运行的超级电容器的两倍(在 2000 C 时)和几乎十倍(在 3700 C 时)。目前的策略为超快 (>1000 C) 和高能量密度超级电容器铺平了道路,通过该超级电容器,能量充电/放电可以在 3.6 s 内完成。