当前位置:
X-MOL 学术
›
J. Mater. Chem. A
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Synergistic strain and N-doping for creating physical orientation selectivity in chemical etching of graphene nanoribbons
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2024-12-11 , DOI: 10.1039/d4ta05960c Xiangyu Meng, Yuansen Zhu, Ying Li, Chengqian Huang, Shiming Zhou, Kuibo Yin, Liang Ma, Jinlan Wang, Yueming Sun, Yunqian Dai
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2024-12-11 , DOI: 10.1039/d4ta05960c Xiangyu Meng, Yuansen Zhu, Ying Li, Chengqian Huang, Shiming Zhou, Kuibo Yin, Liang Ma, Jinlan Wang, Yueming Sun, Yunqian Dai
The controlled synthesis of graphene nanoribbons (GNRs) necessitates precise selectivity in physical orientation during the etching process. However, traditional chemical selectivity methods struggle to etch graphene due to its symmetrical structure and uniform chemical bonds, which result in no differences in reaction pathways or products. We introduce an innovative method that overcomes these limitations by combining physical stress with nitrogen doping, thereby creating new chemical selectivity for oriented etching. This precise synthesis method produces GNRs with adjustable widths ranging from 103 to 16 nm and controlled zigzag edges precisely decorated with peripheral N-dopants. In a cylindrical container, spontaneous self-bending of graphene oxide sheets in ammonia medium can induce strain on the carbon matrix. This strain stretches the C–C bonds and rearranges epoxy-pair chains on the carbon skeleton, directing the graphene oxide etching perpendicular to the strain with the aid of N-aligning, resulting in the production of GNRs. By simply regulating bending strain, we obtained a series of zigzag GNRs with tailorable widths and peripheral N-dopant concentrations. This approach provides a powerful toolbox for fine-tuning the oriented etching geometric features and their electrical and chemical properties in two-dimensional materials (e.g., superior performance of GNRs in electrocatalytic oxygen reduction reactions demonstrated here).
中文翻译:
协同应变和 N 掺杂在石墨烯纳米带化学刻蚀中产生物理取向选择性
石墨烯纳米带 (GNR) 的受控合成需要在蚀刻过程中对物理取向具有精确的选择性。然而,传统的化学选择性方法由于其对称结构和均匀的化学键而难以刻蚀石墨烯,这导致反应途径或产物没有差异。我们引入了一种创新方法,通过将物理应力与氮掺杂相结合来克服这些限制,从而为定向刻蚀创造了新的化学选择性。这种精确的合成方法可产生宽度从 103 到 16 nm 不等的 GNR,并控制锯齿形边缘精确装饰有外围 N 掺杂剂。沿圆柱体容器,氧化石墨烯片在氨介质中的自发自弯曲可对碳基体产生应变。该应变拉伸 C-C 键并重新排列碳骨架上的环氧树脂对链,在 N 对准的帮助下使氧化石墨烯蚀刻垂直于应变,从而产生 GNR。通过简单地调节弯曲应变,我们获得了一系列具有可定制宽度和外围 N 掺杂剂浓度的锯齿形 GNR。这种方法提供了一个强大的工具箱,用于微调二维材料的定向蚀刻几何特征及其电化学反应性(例如,GNR 在电催化氧还原反应中的优异性能)。
更新日期:2024-12-11
中文翻译:
协同应变和 N 掺杂在石墨烯纳米带化学刻蚀中产生物理取向选择性
石墨烯纳米带 (GNR) 的受控合成需要在蚀刻过程中对物理取向具有精确的选择性。然而,传统的化学选择性方法由于其对称结构和均匀的化学键而难以刻蚀石墨烯,这导致反应途径或产物没有差异。我们引入了一种创新方法,通过将物理应力与氮掺杂相结合来克服这些限制,从而为定向刻蚀创造了新的化学选择性。这种精确的合成方法可产生宽度从 103 到 16 nm 不等的 GNR,并控制锯齿形边缘精确装饰有外围 N 掺杂剂。沿圆柱体容器,氧化石墨烯片在氨介质中的自发自弯曲可对碳基体产生应变。该应变拉伸 C-C 键并重新排列碳骨架上的环氧树脂对链,在 N 对准的帮助下使氧化石墨烯蚀刻垂直于应变,从而产生 GNR。通过简单地调节弯曲应变,我们获得了一系列具有可定制宽度和外围 N 掺杂剂浓度的锯齿形 GNR。这种方法提供了一个强大的工具箱,用于微调二维材料的定向蚀刻几何特征及其电化学反应性(例如,GNR 在电催化氧还原反应中的优异性能)。