当前位置:
X-MOL 学术
›
Environ. Sci.: Nano
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Efficient simultaneously quantitative and qualitative detection of multiple phenols using highly water-stable Co2+‐doped Cu-BTC as electrocatalyst
Environmental Science: Nano ( IF 5.8 ) Pub Date : 2024-12-11 , DOI: 10.1039/d4en00912f Yuanfang Li, Xiaoshu Lv, Yan Liu, Jie Yin, Ruimei Fang, Guangming Jiang, Zhehan Yang
Environmental Science: Nano ( IF 5.8 ) Pub Date : 2024-12-11 , DOI: 10.1039/d4en00912f Yuanfang Li, Xiaoshu Lv, Yan Liu, Jie Yin, Ruimei Fang, Guangming Jiang, Zhehan Yang
Abstract: A rational design of water-stable and high-efficiency MOFs-based electrocatalysts thus achieving durable sensitive electrochemical sensors remains a great challenge. Herein, water-stable Co2+ doped-Cu2+ and 1,3,5-benzene tricarboxylic coordination polymers (Cu-BTC@Co) were designed to construct a sensitive and durable electrochemical sensor for simultaneously detecting multiple hazardous phenols. Combining the Mulliken charges of H2O and BTC, the mechanism of the water-stability of Cu-BTC@Co was discussed, which is owing to the intermolecular force (Cu-BTC and Cu-OH2) and the intramolecular force (π-π bond, COO-H2O hydrogen bond), making Cu2+ coordination to BTC being much stronger than water, thereby the Cu-BTC@Co with strong stability in the water environment was achieved. Moreover, doping Co2+ into Cu-BTC not only improves the electron transfer efficiency of Cu-BTC but also enhances the catalytical efficiency of Cu-BTC. Combining the high-efficiency selective catalysis of Cu-BTC@Co and oxidation potential difference among multiple phenols, the Cu-BTC@Co sensor can simultaneously quantitative and qualitative detection of multiple phenols with good multicycle sensing performance. This article clarifies the mechanism of synthesizing water-stable MOFs and promotes the application of MOFs-based sensors in the quantitative analysis of water pollutants.
中文翻译:
使用高度水稳定的 Co2+ 掺杂 Cu-BTC 作为电催化剂,对多种酚类进行高效的同时定量和定性检测
摘要: 如何合理设计水稳定、高效的MOFs基电催化剂,从而实现耐用、灵敏的电化学传感器,仍然是一个巨大的挑战。在此,设计了水稳定的 Co2+ 掺杂 Cu2+ 和 1,3,5-苯三羧酸配位聚合物 (Cu-BTC@Co) 来构建一种灵敏耐用的电化学传感器,用于同时检测多种有害酚类。结合 H2O 和 BTC 的 Mulliken 电荷,讨论了 Cu-BTC@Co 水稳定性的机理,这是由于分子间作用力(Cu-BTC 和 Cu-OH2)和分子内作用力(π-π 键,COO-H2O 氢键),使得 Cu2+ 对 BTC 的配位性远强于水,从而获得了在水环境中具有较强稳定性的 Cu-BTC@Co。此外,将 Co2+ 掺杂到 Cu-BTC 中不仅提高了 Cu-BTC 的电子转移效率,还提高了 Cu-BTC 的催化效率。Cu-BTC@Co 传感器结合了 Cu-BTC@Co 的高效选择性催化和多种酚类之间的氧化电位差,可同时对多种酚类进行定量和定性检测,具有良好的多周期传感性能。本文阐明了合成水稳定 MOF 的机理,并促进了基于 MOF 的传感器在水污染物定量分析中的应用。
更新日期:2024-12-11
中文翻译:
使用高度水稳定的 Co2+ 掺杂 Cu-BTC 作为电催化剂,对多种酚类进行高效的同时定量和定性检测
摘要: 如何合理设计水稳定、高效的MOFs基电催化剂,从而实现耐用、灵敏的电化学传感器,仍然是一个巨大的挑战。在此,设计了水稳定的 Co2+ 掺杂 Cu2+ 和 1,3,5-苯三羧酸配位聚合物 (Cu-BTC@Co) 来构建一种灵敏耐用的电化学传感器,用于同时检测多种有害酚类。结合 H2O 和 BTC 的 Mulliken 电荷,讨论了 Cu-BTC@Co 水稳定性的机理,这是由于分子间作用力(Cu-BTC 和 Cu-OH2)和分子内作用力(π-π 键,COO-H2O 氢键),使得 Cu2+ 对 BTC 的配位性远强于水,从而获得了在水环境中具有较强稳定性的 Cu-BTC@Co。此外,将 Co2+ 掺杂到 Cu-BTC 中不仅提高了 Cu-BTC 的电子转移效率,还提高了 Cu-BTC 的催化效率。Cu-BTC@Co 传感器结合了 Cu-BTC@Co 的高效选择性催化和多种酚类之间的氧化电位差,可同时对多种酚类进行定量和定性检测,具有良好的多周期传感性能。本文阐明了合成水稳定 MOF 的机理,并促进了基于 MOF 的传感器在水污染物定量分析中的应用。