当前位置: X-MOL 学术Comput. Math. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An implementation of hp-FEM for the fractional Laplacian
Computers & Mathematics with Applications ( IF 2.9 ) Pub Date : 2024-11-06 , DOI: 10.1016/j.camwa.2024.10.005
Björn Bahr, Markus Faustmann, Jens Markus Melenk

We consider the discretization of the 1d-integral Dirichlet fractional Laplacian by hp-finite elements. We present quadrature schemes to set up the stiffness matrix and load vector that preserve the exponential convergence of hp-FEM on geometric meshes. The schemes are based on Gauss-Jacobi and Gauss-Legendre rules. We show that taking a number of quadrature points slightly exceeding the polynomial degree is enough to preserve root exponential convergence. The total number of algebraic operations to set up the system is O(N5/2), where N is the problem size. Numerical examples illustrate the analysis. We also extend our analysis to the fractional Laplacian in higher dimensions for hp-finite element spaces based on shape regular meshes.

中文翻译:


分数拉普拉斯算子的 hp-FEM 的实现



我们考虑 hp 有限元对 1d 积分狄利克雷分数拉普拉斯算子的离散化。我们提出了正交方案来设置刚度矩阵和载荷矢量,以保持 hp-FEM 在几何网格上的指数收敛。这些方案基于 Gauss-Jacobi 和 Gauss-Legendre 规则。我们表明,取一些略高于多项式次数的正交点就足以保持根指数收敛性。设置系统的代数运算总数为 O(N5/2),其中 N 是问题大小。数值示例说明了分析。我们还将分析扩展到基于形状规则网格的 hp 有限元空间的更高维度的分数阶拉普拉斯算子。
更新日期:2024-11-06
down
wechat
bug