当前位置:
X-MOL 学术
›
Energy Build.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Thermoelectric power generation in concrete: A study on influential material and structural factors
Energy and Buildings ( IF 6.6 ) Pub Date : 2024-12-07 , DOI: 10.1016/j.enbuild.2024.115159 Yong Luo, Hai Liu
Energy and Buildings ( IF 6.6 ) Pub Date : 2024-12-07 , DOI: 10.1016/j.enbuild.2024.115159 Yong Luo, Hai Liu
This study presents an innovative design for a concrete-based energy harvesting system, focusing on ordinary concrete, steel fiber concrete, and bamboo fiber concrete to identify the most effective material for power generation and efficiency improvement. The temperature transfer characteristics and output voltage of each concrete type are examined in detail. Simulation analyses assess how ambient temperature, wind speed, and the embedding depth of conductive aluminum plates affect the system’s temperature field and output voltage. Field tests measuring the output voltage of steel fiber concrete confirm the model’s accuracy. Results show that steel fiber concrete achieves the highest output voltage, followed by ordinary and bamboo fiber concrete. Among influencing factors, ambient temperature has the most significant impact on output voltage, ranked as ambient temperature > wind speed > aluminum plate embedding depth. Over time, the influence of embedding depth on output voltage lessens. When the temperature difference across the thermoelectric module reaches 54.6 °C, the system generates an output voltage of 1.09 V, meeting low-power generation requirements. This research aims to reduce pavement temperatures, preventing damage to pavement structures from high temperatures, while harnessing the temperature difference between concrete pavement and air to generate clean energy. This approach meets the power demands of road systems and lays a solid foundation for integrating energy generation with construction.
中文翻译:
混凝土热电发电:影响材料和结构因素的研究
本研究提出了一种基于混凝土的能量收集系统的创新设计,重点关注普通混凝土、钢纤维混凝土和竹纤维混凝土,以确定最有效的发电和效率提高材料。详细研究了每种混凝土类型的温度传递特性和输出电压。仿真分析评估了环境温度、风速和导电铝板的嵌入深度如何影响系统的温度场和输出电压。测量钢纤维混凝土输出电压的现场测试证实了该模型的准确性。结果表明,钢纤维混凝土的输出电压最高,其次是普通纤维混凝土和竹纤维混凝土。在影响因素中,环境温度对输出电压的影响最为显著,排序为环境温度 > 风速 > 铝板嵌入深度。随着时间的推移,嵌入深度对输出电压的影响会减小。当热电模块上的温差达到 54.6 °C 时,系统产生 1.09 V 的输出电压,满足低发电要求。本研究旨在降低路面温度,防止高温对路面结构造成损坏,同时利用混凝土路面和空气之间的温差来产生清洁能源。这种方法满足了道路系统的电力需求,并为能源生产和建筑的整合奠定了坚实的基础。
更新日期:2024-12-07
中文翻译:
混凝土热电发电:影响材料和结构因素的研究
本研究提出了一种基于混凝土的能量收集系统的创新设计,重点关注普通混凝土、钢纤维混凝土和竹纤维混凝土,以确定最有效的发电和效率提高材料。详细研究了每种混凝土类型的温度传递特性和输出电压。仿真分析评估了环境温度、风速和导电铝板的嵌入深度如何影响系统的温度场和输出电压。测量钢纤维混凝土输出电压的现场测试证实了该模型的准确性。结果表明,钢纤维混凝土的输出电压最高,其次是普通纤维混凝土和竹纤维混凝土。在影响因素中,环境温度对输出电压的影响最为显著,排序为环境温度 > 风速 > 铝板嵌入深度。随着时间的推移,嵌入深度对输出电压的影响会减小。当热电模块上的温差达到 54.6 °C 时,系统产生 1.09 V 的输出电压,满足低发电要求。本研究旨在降低路面温度,防止高温对路面结构造成损坏,同时利用混凝土路面和空气之间的温差来产生清洁能源。这种方法满足了道路系统的电力需求,并为能源生产和建筑的整合奠定了坚实的基础。