当前位置:
X-MOL 学术
›
Energy Storage Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
3D printing of multiscale biomimetic structural electrodes: Achieving ultrahigh deformability and areal capacity for Li-ion batteries
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-12-10 , DOI: 10.1016/j.ensm.2024.103958 Jiaming Li, Mengli Li, Chi Guo, Xianglin Zhou, Jiawen Zhang, John Wang, Yunfei Chen, Zhiyang Lyu
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-12-10 , DOI: 10.1016/j.ensm.2024.103958 Jiaming Li, Mengli Li, Chi Guo, Xianglin Zhou, Jiawen Zhang, John Wang, Yunfei Chen, Zhiyang Lyu
Deformable batteries that are flexible and adaptable to various shapes are crucial power sources for flexible and wearable electronics. Designing of structural electrodes has proven effective in enhancing battery deformability. However, this often compromises electrode areal loading, resulting in lower areal capacities. Herein, we design multiscale biomimetic structural electrodes fabricated via an in-situ directional freezing-assisted 3D printing approach. This new approach effectively incorporates microscopic directionally porous structures and macroscopic serpentine structures, achieving the designed compatibility with ultrahigh deformation and ultrahigh areal capacities simultaneously. The thus-made electrodes allow for exceptional deformability, including 300 % stretching, 180° twisting, and 360° bending, while maintaining a high areal loading of up to ∼65 %. The half-cells with directional micro-channel electrodes demonstrate superior specific capacities, cycling stability, and rate capability, when compared to the cells with nondirectional electrodes. The assembled Li-ion full-cell can readily power LEDs in various deformable states, and a structure-integrated wearable watch device is designed in a bent watchband configuration. Our new strategy offers a rational design approach for highly deformable and customized electrodes, advancing the development of deformable batteries for wearable devices.
中文翻译:
多尺度仿生结构电极的 3D 打印:实现锂离子电池的超高变形能力和面容量
柔性和适应性强的可变形电池是柔性和可穿戴电子产品的重要电源。结构电极的设计已被证明可以有效地提高电池的变形能力。然而,这通常会损害电极的面负载,从而导致面容量降低。在此,我们设计了通过原位定向冷冻辅助 3D 打印方法制造的多尺度仿生结构电极。这种新方法有效地结合了微观定向多孔结构和宏观蛇形结构,同时实现了超高变形和超高面容量的设计兼容性。因此制成的电极具有出色的变形能力,包括 300% 拉伸、180° 扭曲和 360° 弯曲,同时保持高达 ∼65% 的高面载荷。与具有非定向电极的电池相比,具有定向微通道电极的半电池表现出卓越的比容量、循环稳定性和倍率能力。组装好的锂离子全电池可以很容易地为各种可变形状态的 LED 供电,并且以弯曲的表带配置设计了结构集成的可穿戴手表设备。我们的新策略为高度可变形和定制电极提供了一种合理的设计方法,推动了可穿戴设备可变形电池的开发。
更新日期:2024-12-10
中文翻译:
多尺度仿生结构电极的 3D 打印:实现锂离子电池的超高变形能力和面容量
柔性和适应性强的可变形电池是柔性和可穿戴电子产品的重要电源。结构电极的设计已被证明可以有效地提高电池的变形能力。然而,这通常会损害电极的面负载,从而导致面容量降低。在此,我们设计了通过原位定向冷冻辅助 3D 打印方法制造的多尺度仿生结构电极。这种新方法有效地结合了微观定向多孔结构和宏观蛇形结构,同时实现了超高变形和超高面容量的设计兼容性。因此制成的电极具有出色的变形能力,包括 300% 拉伸、180° 扭曲和 360° 弯曲,同时保持高达 ∼65% 的高面载荷。与具有非定向电极的电池相比,具有定向微通道电极的半电池表现出卓越的比容量、循环稳定性和倍率能力。组装好的锂离子全电池可以很容易地为各种可变形状态的 LED 供电,并且以弯曲的表带配置设计了结构集成的可穿戴手表设备。我们的新策略为高度可变形和定制电极提供了一种合理的设计方法,推动了可穿戴设备可变形电池的开发。