当前位置: X-MOL 学术ACS Sens. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Surface Plasmon-Driven Versatile Enhancement of Chemosensing
ACS Sensors ( IF 8.2 ) Pub Date : 2024-12-09 , DOI: 10.1021/acssensors.4c01985
Chunhui Li, Dinghai Xu, Huan Liu, Wenxing Xu, Bo Wang, Qingguo He, Wei Xu, Yanyan Fu, Huizi Li, Jiangong Cheng

Chemo-sensors have deeply integrated into various facets of our daily lives. To further satisfy the increasing performance demand, the current attempts are mainly centered on materials science approaches, usually involving time-& labor-consuming structure designing, synthesis, and modification. To date, it remains largely unexplored to enhance sensing material performance at the fundamental physical level by strategic exploitation of optical properties. In this work, we proposed a facile and versatile approach for improving the material performance by strategically utilizing the surface plasmon resonance─a characteristic property of optical devices. This approach is revealed to have a dual effect on fluorescence-based chemosensing: it amplifies the collection of fluorescence signals and simultaneously expedites the kinetics of chemical reactions. In this work, we developed a surface plasmon-driven fluorescence-based chemosensor that utilizes the 2,4,6-trisformyl phenol-diethylamine (TFP-I) fluorescent probe for the detection of hydrogen peroxide (H2O2) gas molecules. By harnessing the dual-effect induced by surface plasmons, we achieved outstanding sensing performance for H2O2 gas molecules, characterized by 0.0225 ppt sensitivity and an exceedingly low limit of detection. This study substantiates the applicability of the surface plasmon resonance-based optical effect in the realm of fluorescent chemical materials for sensing performance amplification. Beyond this, it pioneers the strategic harnessing of optical effects to manipulate the performance of chemical materials, particularly for the advancement of sensing capabilities.

中文翻译:


表面等离子体驱动的化学传感多功能增强



化学传感器已经深度融入了我们日常生活的各个方面。为了进一步满足日益增长的性能需求,目前的尝试主要集中在材料科学方法上,通常涉及耗时的结构设计、综合和修改。迄今为止,通过战略性地利用光学特性来提高基本物理水平的传感材料性能,在很大程度上仍未得到探索。在这项工作中,我们提出了一种简单而通用的方法,通过战略性地利用表面等离子体共振(光学器件的一个特性)来提高材料性能。这种方法对基于荧光的化学传感具有双重影响:它放大了荧光信号的收集,同时加快了化学反应的动力学。在这项工作中,我们开发了一种表面等离子体驱动的基于荧光的化学传感器,它利用 2,4,6-三甲酰基酚-二乙胺 (TFP-I) 荧光探针来检测过氧化氢 (H2O2) 气体分子。通过利用表面等离激元诱导的双重效应,我们对 H2O2 气体分子实现了出色的传感性能,其特点是 0.0225 ppt 的灵敏度和极低的检测限。本研究证实了基于表面等离子体共振的光学效应在荧光化学材料领域对传感性能放大的适用性。除此之外,它还开创了战略性地利用光学效应来操纵化学材料的性能,特别是为了提高传感能力。
更新日期:2024-12-10
down
wechat
bug