当前位置: X-MOL 学术ACS Energy Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sliceable, Moldable, and Highly Conductive Electrolytes for All-Solid-State Batteries
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-12-09 , DOI: 10.1021/acsenergylett.4c02788
Tej P. Poudel, Erica Truong, Ifeoluwa P. Oyekunle, Michael J. Deck, Bright Ogbolu, Yudan Chen, Pawan K. Ojha, Thilina N. D. D. Gamaralalage, Sawankumar V. Patel, Yongkang Jin, Dewen Hou, Chen Huang, Tianyi Li, Yuzi Liu, Hui Xiong, Yan-Yan Hu

All-solid-state batteries (ASSBs) require solid electrolytes with high ionic conductivity, stability, and deformability for optimal energy and power density. We developed lithium-deficient lithium yttrium bromide (LYB) solid electrolytes, Li3–xYBr6–x (0 ≤ x ≤ 0.50), using a comelting method with controlled lithium deficiency. These electrolytes exhibit favorable mechanical properties such as high moldability and sliceability. The Li2.65YBr5.65 composition has an ionic conductivity of 4.49 mS cm–1 at 25 °C and an activation energy of 0.28 eV. Compared to Li3YBr6, Li2.65YBr5.65 demonstrates improved rate performance and cycling stability in ASSBs. High-resolution X-ray diffraction confirms the formation of the LYB phase with a C2/m space group. Structural analysis reveals increased cation disorder and larger polyhedral volumes for x > 0 in Li3–xYBr6–x , contributing to reduced Li+ migration energy barriers. Bond valence site energy calculations and molecular dynamics simulations reveal enhanced 3D lithium-ion transport. NMR spectroscopy further highlights increased Li+ dynamics and impurity elimination.

中文翻译:


用于全固态电池的可切片、可模塑和高导电电解质



全固态电池 (ASSB) 需要具有高离子电导率、稳定性和可变形性的固体电解质,以实现最佳能量和功率密度。我们使用受控缺锂缺乏锂的共熔方法开发了缺锂溴化钇锂 (LYB) 固体电解质 Li3–x YBr6–x (0 ≤ x ≤ 0.50)。这些电解质表现出良好的机械性能,例如高成型性和可切片性。Li2.65YBr5.65 成分在 25 °C 时的离子电导率为 4.49 mS cm–1,活化能为 0.28 eV。与 Li3YBr6 相比,Li2.65YBr5.65 在 ASSBs 中表现出更好的倍率性能和循环稳定性。高分辨率 X 射线衍射证实了 LYB 相的形成与 C2/m 空间群。结构分析显示 Li3–xYBr6–xx > 0 的阳离子无序增加和多面体体积增大,有助于减少 Li+ 迁移能垒。键价位点能量计算和分子动力学模拟揭示了增强的 3D 锂离子传输。NMR 波谱进一步突出了 Li+ 动力学和杂质消除的增加。
更新日期:2024-12-10
down
wechat
bug