当前位置:
X-MOL 学术
›
ACS Energy Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Interface Chemistry Engineering toward Layer-Structured Oxide for Potassium-Ion Batteries
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-12-09 , DOI: 10.1021/acsenergylett.4c03191 Xuan-Chen Wang, Lu-Kang Zhao, Zhao-Meng Liu, Qinfen Gu, Xuan-Wen Gao, Wen-Bin Luo
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-12-09 , DOI: 10.1021/acsenergylett.4c03191 Xuan-Chen Wang, Lu-Kang Zhao, Zhao-Meng Liu, Qinfen Gu, Xuan-Wen Gao, Wen-Bin Luo
An unstable cathode–electrolyte interface leads to a continuous decomposition of the electrolyte and low Coulombic efficiency, resulting in rapid capacity degradation. A stable cathode–electrolyte interface chemistry engineering was thus employed to achieve the highly stable K0.5MnO2 as a cathode for potassium-ion batteries (PIBs). Theoretical calculations and experimental results show that carbonate electrolyte of potassium bis(fluorosulfonyl)imide (KFSI) in ethyl methyl carbonate (EMC) can facilitate the realization of anion-dominated interfacial behavior and the construction of a stable cathode electrolyte interphase (CEI) film with uniform inorganic/organic compositions. It can accelerate the K+ solvation–desolvation process and induce the formation of a stable CEI with more inorganic components, contributing to the stable and fast charge/ions transfer kinetics. The designed electrolyte provides new insights for enhancing the stability of a layered oxide cathode, which is of great significance for promoting the development of cathodes for PIBs.
中文翻译:
面向钾离子电池层状结构氧化物的界面化学工程
不稳定的阴极-电解质界面导致电解质持续分解和库仑效率低,从而导致容量快速退化。因此,采用稳定的阴极-电解质界面化学工程来实现高度稳定的 K0.5MnO2 作为钾离子电池 (PIB) 的阴极。理论计算和实验结果表明,在碳酸甲乙酯 (EMC) 中,双(氟磺酰)酰亚胺钾 (KFSI) 的碳酸盐电解质有助于实现阴离子主导的界面行为,并构建具有均匀无机/有机成分的稳定阴极电解质界面 (CEI) 膜。它可以加速 K+ 溶剂化-脱溶剂化过程,并诱导形成具有更多无机成分的稳定 CEI,有助于稳定和快速的电荷/离子转移动力学。所设计的电解质为增强层状氧化物正极的稳定性提供了新的见解,对促进 PIBs 正极的发展具有重要意义。
更新日期:2024-12-10
中文翻译:
面向钾离子电池层状结构氧化物的界面化学工程
不稳定的阴极-电解质界面导致电解质持续分解和库仑效率低,从而导致容量快速退化。因此,采用稳定的阴极-电解质界面化学工程来实现高度稳定的 K0.5MnO2 作为钾离子电池 (PIB) 的阴极。理论计算和实验结果表明,在碳酸甲乙酯 (EMC) 中,双(氟磺酰)酰亚胺钾 (KFSI) 的碳酸盐电解质有助于实现阴离子主导的界面行为,并构建具有均匀无机/有机成分的稳定阴极电解质界面 (CEI) 膜。它可以加速 K+ 溶剂化-脱溶剂化过程,并诱导形成具有更多无机成分的稳定 CEI,有助于稳定和快速的电荷/离子转移动力学。所设计的电解质为增强层状氧化物正极的稳定性提供了新的见解,对促进 PIBs 正极的发展具有重要意义。