当前位置:
X-MOL 学术
›
Phys. Chem. Chem. Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Unveiling the potential of RADA16-I peptide-coated silver nanoparticles for biomedical uses: a computational study
Physical Chemistry Chemical Physics ( IF 2.9 ) Pub Date : 2024-12-10 , DOI: 10.1039/d4cp03275f Matías Zúñiga-Bustos, Constanza Galaz-Araya, Horacio Poblete
Physical Chemistry Chemical Physics ( IF 2.9 ) Pub Date : 2024-12-10 , DOI: 10.1039/d4cp03275f Matías Zúñiga-Bustos, Constanza Galaz-Araya, Horacio Poblete
Nanomaterials, specifically silver nanoparticles (AgNPs), have demonstrated great potential in biomedical applications due to their unique properties, such as antimicrobial activity and conductivity. One promising strategy to improve their biocompatibility and functional specificity is through the functionalization of AgNPs with peptides. By attaching peptides to the surface of AgNPs, their interaction with biological systems can be enhanced and tailored for specific applications. This computational study uses classical molecular dynamics and enhancement sampling techniques to investigate the interaction between AgNPs and RADA16-I peptides, as well as their derivative CLKRADA16-I. It utilizes classical molecular dynamics and enhanced sampling methods to gain insights into the structural information and details of their interaction. Furthermore, this study addresses the need for a better understanding of the interaction between composite materials made of nanoparticles and peptides. Our results demonstrate that the incorporation of the CLK motif significantly augments both structural stability and the binding affinity of peptides to silver nanoparticles. Through computational simulations, we observed that peptides modified with the CLK motif (CLKRADA16-I) exhibit a higher binding affinity toward a silver surface model, with the adsorption energy increasing by up to 4.2 kcal mol−1 relative to unmodified peptides. This calculated interaction energy boosts adsorption and surface coverage, facilitating a packed and more effective peptide coating on the silver nanoparticles. These findings pave the way for the advancement of AgNPs as versatile agents in nanomedicine, particularly necessitating precise molecular recognition and robust bioactive scaffolding. Our study enhances the understanding of nanoparticle–peptide conjugates and their implications for designing next-generation nanomaterials.
中文翻译:
揭示 RADA16-I 肽包被银纳米颗粒在生物医学领域的潜力:一项计算研究
纳米材料,特别是银纳米颗粒 (AgNP),由于其独特的特性,如抗菌活性和导电性,在生物医学应用中显示出巨大的潜力。提高其生物相容性和功能特异性的一种有前途的策略是通过 AgNP 与肽的功能化。通过将肽附着在 AgNP 表面,可以增强它们与生物系统的相互作用,并针对特定应用进行定制。这项计算研究使用经典的分子动力学和增强采样技术来研究 AgNPs 和 RADA16-I 肽及其衍生物 CLKRADA16-I 之间的相互作用。它利用经典的分子动力学和增强的采样方法来深入了解结构信息和它们相互作用的细节。此外,这项研究解决了更好地了解由纳米颗粒和肽制成的复合材料之间相互作用的需求。我们的结果表明,CLK 基序的掺入显着增强了结构稳定性和肽与银纳米颗粒的结合亲和力。通过计算模拟,我们观察到用 CLK 基序 (CLKRADA16-I) 修饰的肽对银表面模型表现出更高的结合亲和力,相对于未修饰的肽,吸附能增加高达 4.2 kcal mol −1 。这种计算出的相互作用能提高了吸附和表面覆盖率,促进了银纳米颗粒上的填充和更有效的肽涂层。这些发现为 AgNPs 作为纳米医学多功能剂的发展铺平了道路,特别是需要精确的分子识别和强大的生物活性支架。 我们的研究增强了对纳米颗粒-肽偶联物及其对设计下一代纳米材料的影响的理解。
更新日期:2024-12-10
中文翻译:
揭示 RADA16-I 肽包被银纳米颗粒在生物医学领域的潜力:一项计算研究
纳米材料,特别是银纳米颗粒 (AgNP),由于其独特的特性,如抗菌活性和导电性,在生物医学应用中显示出巨大的潜力。提高其生物相容性和功能特异性的一种有前途的策略是通过 AgNP 与肽的功能化。通过将肽附着在 AgNP 表面,可以增强它们与生物系统的相互作用,并针对特定应用进行定制。这项计算研究使用经典的分子动力学和增强采样技术来研究 AgNPs 和 RADA16-I 肽及其衍生物 CLKRADA16-I 之间的相互作用。它利用经典的分子动力学和增强的采样方法来深入了解结构信息和它们相互作用的细节。此外,这项研究解决了更好地了解由纳米颗粒和肽制成的复合材料之间相互作用的需求。我们的结果表明,CLK 基序的掺入显着增强了结构稳定性和肽与银纳米颗粒的结合亲和力。通过计算模拟,我们观察到用 CLK 基序 (CLKRADA16-I) 修饰的肽对银表面模型表现出更高的结合亲和力,相对于未修饰的肽,吸附能增加高达 4.2 kcal mol −1 。这种计算出的相互作用能提高了吸附和表面覆盖率,促进了银纳米颗粒上的填充和更有效的肽涂层。这些发现为 AgNPs 作为纳米医学多功能剂的发展铺平了道路,特别是需要精确的分子识别和强大的生物活性支架。 我们的研究增强了对纳米颗粒-肽偶联物及其对设计下一代纳米材料的影响的理解。