当前位置: X-MOL 学术Phys. Chem. Chem. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Exploring buoyancy-driven effects in chemo-hydrodynamic oscillations sustained by bimolecular reactions
Physical Chemistry Chemical Physics ( IF 2.9 ) Pub Date : 2024-12-10 , DOI: 10.1039/d4cp03617d
Adam Bigaj, Marcello A. Budroni, Laurence Rongy

Exotic dynamics, previously associated only with reactions involving complex kinetics, have been observed even with simple bimolecular reactions A + B → C, when coupled with hydrodynamical flows. Numerical studies in two-dimensional reactors have shown that oscillatory dynamics can emerge from an antagonistic coupling between chemically-driven buoyancy and Marangoni convective flows, induced by changes in density and surface tension, respectively, as the reaction occurs. Here, we investigate reactions increasing both surface tension and density, leading to a cooperative coupling between the flows and show how, in this configuration, buoyancy-driven contribution dampens spatio-temporal oscillations of concentration. We finally identify the key parameters controlling the onset and persistence of the oscillatory instability, namely the density and surface tension gradients, and the systems height.

中文翻译:


探索双分子反应维持的化学流体动力学振荡中的浮力驱动效应



以前仅与涉及复杂动力学的反应相关的奇异动力学,当与流体动力学流耦合时,即使在简单的双分子反应 A + B → C 中也观察到了奇异动力学。二维反应器中的数值研究表明,振荡动力学可以来自化学驱动的浮力和马兰戈尼对流之间的拮抗耦合,分别由反应发生时密度和表面张力的变化引起。在这里,我们研究了增加表面张力和密度的反应,导致流动之间的协同耦合,并展示了在这种配置中,浮力驱动的贡献如何抑制浓度的时空振荡。我们最终确定了控制振荡不稳定性发生和持续的关键参数,即密度和表面张力梯度以及系统高度。
更新日期:2024-12-13
down
wechat
bug