当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In‐Situ Construction of Solid Electrolyte Interphases with Gradient Zincophilicity for Wide Temperature Zinc Ion Batteries
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-12-10 , DOI: 10.1002/aenm.202404108
Zetao Chen, Wanting Zhou, Shunshun Zhao, Xinhua Lou, Shimou Chen

Dendrite growth and parasitic side reactions on zinc (Zn) metal anode are major challenges limiting the practical application of aqueous zinc ion batteries (AZIBs), particularly under wide temperatures conditions. This study proposes a novel hydrated deep eutectic solvent based electrolyte by using ethylene glycol (EG) and SnI4, enabling AZIBs to achieve excellent cycling life from −30 to 60 °C. Spectroscopic characterizations reveal H2O molecules are effectively confined within the eutectic network due to the dual effects of Zn2+ coordination and EG hydrogen bonding, thereby weakening the free water activity and broadening the electrochemical window. Furthermore, resulting from the dissociation‐reduction of the eutectic molecules and SnI4, an organic‐inorganic hybridized solid electrolyte interphase (SEI) layer is formed on Zn surface with the zincophile gradient, this gradient SEI layer effectively inhibits the hydrogen evolution reactions and regulates the oriented Zn deposition. The Zn//Zn symmetric cell utilizing this electrolyte achieves remarkable cycling stability of over 7800 h at room temperature, over 6000 h at −30 °C, and 2500 h at 60 °C. This work provides insights into the new approach and formation mechanism of zincophile gradient SEI layer on Zn anode, which demonstrates significant potential for developing AZIBs with high stability under wide temperatures conditions.

中文翻译:


宽温锌离子电池具有梯度亲锌性的固体电解质界面的原位构建



锌 (Zn) 金属负极上的枝晶生长和寄生副反应是限制水性锌离子电池 (AZIB) 实际应用的主要挑战,尤其是在宽温度条件下。本研究通过使用乙二醇 (EG) 和 SnI4 提出了一种新型水合低共晶溶剂基电解质,使 AZIBs 能够在 -30 至 60 °C 范围内实现出色的循环寿命。 光谱表征表明,由于 Zn2+ 配位和 EG 氢键的双重效应,H2O 分子有效地局限在共晶网络中,从而减弱了自由水活性并拓宽了电化学窗口。此外,由于共晶分子和 SnI4 的解离还原,在 Zn 表面以亲锌梯度形成有机-无机杂化固体电解质界面 (SEI) 层,该梯度 SEI 层有效抑制析氢反应并调节定向 Zn 沉积。利用这种电解质的 Zn//Zn 对称电池在室温下实现了超过 7800 小时的显着循环稳定性,在 -30 °C 下超过 6000 小时,在 60 °C 下超过 2500 小时。 这项工作为Zn负极上亲锌梯度SEI层的新方法和形成机制提供了见解,这证明了在宽温度条件下开发具有高稳定性的AZIBs的巨大潜力。
更新日期:2024-12-10
down
wechat
bug