当前位置:
X-MOL 学术
›
Adv. Electron. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Transfer of Millimeter‐Scale Strained Multiferroic Epitaxial Thin Films on Rigid Substrates via an Epoxy Method Producing Magnetic Property Enhancement
Advanced Electronic Materials ( IF 5.3 ) Pub Date : 2024-12-10 , DOI: 10.1002/aelm.202400492 James P. Barnard, Yizhi Zhang, Lizabeth Quigley, Jianan Shen, Benson Kunhung Tsai, Max R. Chhabra, Jiho Noh, Hyunseung Jung, Oleg Mitrofanov, Raktim Sarma, Aleem Siddiqui, Igal Brener, Chloe F. Doiron, Haiyan Wang
Advanced Electronic Materials ( IF 5.3 ) Pub Date : 2024-12-10 , DOI: 10.1002/aelm.202400492 James P. Barnard, Yizhi Zhang, Lizabeth Quigley, Jianan Shen, Benson Kunhung Tsai, Max R. Chhabra, Jiho Noh, Hyunseung Jung, Oleg Mitrofanov, Raktim Sarma, Aleem Siddiqui, Igal Brener, Chloe F. Doiron, Haiyan Wang
![]() |
The demonstration of epitaxial thin film transfer has enormous potential for thin film devices free from the traditional substrate epitaxy limitations. However, large‐area continuous film transfer remains a challenge for the commonly reported polymer‐based transfer methods due to bending and cracking during transfer, especially for highly strained epitaxial thin films. In this work, a new epoxy‐based, rigid transfer method is used to transfer films from an SrTiO3 (STO) growth substrate onto various new substrates, including those that will typically pose significant problems for epitaxy. An epitaxial multiferroic Bi3 Fe2 Mn2 Ox (BFMO) layered supercell (LSC) material is selected as the thin film for this demonstration. The results of surface and structure studies show an order of magnitude increase in the continuous area of transferred films when compared to previous transfer methods. The magnetic properties of the BFMO LSC films are shown to be enhanced by the release of strain in this method, and ferromagnetic resonance is found with an exceptionally low Gilbert damping coefficient. The large‐area transfer of this highly strained complex oxide BFMO thin film presents enormous potential for the integration of many other multifunctional oxides onto new substrates for future magnetic sensors and memory devices.
中文翻译:
通过环氧树脂方法在刚性衬底上转移毫米级应变多铁外延薄膜,从而增强磁性能
外延薄膜转移的演示对于摆脱传统衬底外延限制的薄膜器件具有巨大潜力。然而,由于转移过程中的弯曲和开裂,大面积连续薄膜转移对于通常报道的基于聚合物的转移方法仍然是一个挑战,特别是对于高度应变的外延薄膜。在这项工作中,使用了一种新的基于环氧树脂的刚性转移方法,将薄膜从 SrTiO3 (STO) 生长衬底转移到各种新衬底上,包括那些通常会对外延造成重大问题的衬底。选择外延多铁性 Bi3Fe2Mn2Ox (BFMO) 层状超胞 (LSC) 材料作为本演示的薄膜。表面和结构研究的结果表明,与以前的转移方法相比,转移膜的连续面积增加了一个数量级。在这种方法中,BFMO LSC 薄膜的磁性通过释放应变而得到增强,并且铁磁共振具有极低的吉尔伯特阻尼系数。这种高度应变的复杂氧化物 BFMO 薄膜的大面积转移为将许多其他多功能氧化物集成到未来磁传感器和存储设备的新衬底上提供了巨大的潜力。
更新日期:2024-12-10
中文翻译:

通过环氧树脂方法在刚性衬底上转移毫米级应变多铁外延薄膜,从而增强磁性能
外延薄膜转移的演示对于摆脱传统衬底外延限制的薄膜器件具有巨大潜力。然而,由于转移过程中的弯曲和开裂,大面积连续薄膜转移对于通常报道的基于聚合物的转移方法仍然是一个挑战,特别是对于高度应变的外延薄膜。在这项工作中,使用了一种新的基于环氧树脂的刚性转移方法,将薄膜从 SrTiO3 (STO) 生长衬底转移到各种新衬底上,包括那些通常会对外延造成重大问题的衬底。选择外延多铁性 Bi3Fe2Mn2Ox (BFMO) 层状超胞 (LSC) 材料作为本演示的薄膜。表面和结构研究的结果表明,与以前的转移方法相比,转移膜的连续面积增加了一个数量级。在这种方法中,BFMO LSC 薄膜的磁性通过释放应变而得到增强,并且铁磁共振具有极低的吉尔伯特阻尼系数。这种高度应变的复杂氧化物 BFMO 薄膜的大面积转移为将许多其他多功能氧化物集成到未来磁传感器和存储设备的新衬底上提供了巨大的潜力。