当前位置:
X-MOL 学术
›
Environ. Pollut.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Harnessing CuCoOX-Modified copper phenylacetylene for enhanced activation of peroxymonosulfate in non-radical sulfisoxazole degradation: Performance, pathways, and mechanisms
Environmental Pollution ( IF 7.6 ) Pub Date : 2024-12-10 , DOI: 10.1016/j.envpol.2024.125521 Wenjun Li, Daguang Li, Zili Lin, Yuchun Hong, Yishun Wang, Guangzhi Zhang, Ping Chen, Wenying Lv, Guoguang Liu
Environmental Pollution ( IF 7.6 ) Pub Date : 2024-12-10 , DOI: 10.1016/j.envpol.2024.125521 Wenjun Li, Daguang Li, Zili Lin, Yuchun Hong, Yishun Wang, Guangzhi Zhang, Ping Chen, Wenying Lv, Guoguang Liu
The advanced oxidation process utilizing peroxymonosulfate (PMS) represents a promising approach for the treatment of refractory antibiotic compounds in water. However, the unactivated form of PMS shows limited degradation efficiency, necessitating the development of activation strategies to improve catalytic degradation. In this study, a rapid and straightforward solvothermal method was employed to synthesize a CuCoOX -modified phenylacetylene copper catalyst (PhC2 Cu), which effectively activates PMS for the degradation of sulfisoxazole (SIZ) in water. The modified catalyst exhibited a catalytic performance approximately 29 times greater than its unmodified counterpart, achieving complete degradation of the target pollutant within 5 min. Additionally, the PhC2 Cu/CuCoOX + PMS system successfully degraded nine antibiotics, including sulfonamides, fluoroquinolones, and non-steroidal anti-inflammatory drugs. Notably, the catalytic degradation of pollutants in this system primarily followed a non-radical pathway mediated by singlet oxygen (1 O2 ) and high-valent cobalt-oxygen species (Co(IV)). These active species demonstrated strong anti-interference properties, maintaining stability in the presence of various ions, dissolved organic matter, and natural water matrices. Furthermore, the intermediates and degradation pathways of sulfisoxazole (SIZ) were identified through mass spectrometry analysis. This study not only provides a catalytic strategy for the efficient activation of PMS but also elucidates the non-radical degradation mechanism.
中文翻译:
利用 CuCoOX 改性的苯乙炔铜增强非自由基磺胺异恶唑降解中过氧一硫酸盐的活化:性能、途径和机制
利用过氧一硫酸盐 (PMS) 的高级氧化工艺代表了一种很有前途的处理水中难降解抗生素化合物的方法。然而,未活化形式的 PMS 显示出有限的降解效率,因此需要开发活化策略来改善催化降解。在本研究中,采用一种快速直接的溶剂热法合成了 CuCoOX 改性的苯乙炔铜催化剂 (PhC2Cu),该催化剂可有效激活 PMS 以降解水中磺胺异恶唑 (SIZ)。改性催化剂的催化性能比未改性催化剂高约 29 倍,可在 5 分钟内完全降解目标污染物。此外,PhC2Cu/CuCoOX + PMS 系统成功降解了 9 种抗生素,包括磺胺类药物、氟喹诺酮类和非甾体抗炎药。值得注意的是,该系统中污染物的催化降解主要遵循由单线态氧 (1O2) 和高价钴氧 (Co(IV)) 介导的非自由基途径。这些活性物质表现出很强的抗干扰性能,在各种离子、溶解有机物和天然水基质存在下保持稳定性。此外,通过质谱分析鉴定了磺胺异恶唑 (SIZ) 的中间体和降解途径。本研究不仅为高效激活 PMS 提供了催化策略,还阐明了非自由基降解机制。
更新日期:2024-12-10
中文翻译:
利用 CuCoOX 改性的苯乙炔铜增强非自由基磺胺异恶唑降解中过氧一硫酸盐的活化:性能、途径和机制
利用过氧一硫酸盐 (PMS) 的高级氧化工艺代表了一种很有前途的处理水中难降解抗生素化合物的方法。然而,未活化形式的 PMS 显示出有限的降解效率,因此需要开发活化策略来改善催化降解。在本研究中,采用一种快速直接的溶剂热法合成了 CuCoOX 改性的苯乙炔铜催化剂 (PhC2Cu),该催化剂可有效激活 PMS 以降解水中磺胺异恶唑 (SIZ)。改性催化剂的催化性能比未改性催化剂高约 29 倍,可在 5 分钟内完全降解目标污染物。此外,PhC2Cu/CuCoOX + PMS 系统成功降解了 9 种抗生素,包括磺胺类药物、氟喹诺酮类和非甾体抗炎药。值得注意的是,该系统中污染物的催化降解主要遵循由单线态氧 (1O2) 和高价钴氧 (Co(IV)) 介导的非自由基途径。这些活性物质表现出很强的抗干扰性能,在各种离子、溶解有机物和天然水基质存在下保持稳定性。此外,通过质谱分析鉴定了磺胺异恶唑 (SIZ) 的中间体和降解途径。本研究不仅为高效激活 PMS 提供了催化策略,还阐明了非自由基降解机制。