当前位置: X-MOL 学术Soc. Sci. Comput. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Asking for Traces: A Vignette Study on Acceptability Norms and Personal Willingness to Donate Digital Trace Data
Social Science Computer Review ( IF 3.0 ) Pub Date : 2024-12-09 , DOI: 10.1177/08944393241305776
Henning Silber, Johannes Breuer, Barbara Felderer, Frederic Gerdon, Patrick Stammann, Jessica Daikeler, Florian Keusch, Bernd Weiß

Digital trace data are increasingly used in the social sciences. Given the risks associated with data access via application programming interfaces (APIs) as well as ethical discussions around the use of such data, data donations have been proposed as a methodologically reliable and ethically sound way of collecting digital trace data. While data donations have many advantages, study participants may be reluctant to share their data, for example, due to privacy concerns. To assess which factors in a data donation request are relevant for participants’ acceptance and decisions, we conducted a vignette experiment investigating the general acceptability and personal willingness to donate various data types (i.e., data from GPS, web browsing, LinkedIn/Xing, Facebook, and TikTok) for research purposes. The preregistered study was implemented in the probability-based German Internet Panel (GIP) and gathered responses from n = 3821 participants. Results show that people rate the general acceptability of data donation requests higher than their own willingness to donate data. Regarding the different data types, respondents indicated that they would be more willing to donate their LinkedIn/Xing, TikTok, and GPS data compared to web browsing and Facebook data. In contrast, information about whether the donated data would be shared with other researchers and data security did not affect the responses to the respective donation scenarios. Based on these results, we discuss implications for studies employing data donations.

中文翻译:


要求痕迹:关于可接受性规范和个人捐赠数字痕迹数据意愿的小插图研究



数字跟踪数据越来越多地用于社会科学。考虑到通过应用程序编程接口 (API) 访问数据以及围绕使用此类数据的道德讨论相关的风险,数据捐赠已被提议作为收集数字跟踪数据的方法可靠且合乎道德的方式。虽然数据捐赠有很多好处,但研究参与者可能不愿意分享他们的数据,例如,出于隐私考虑。为了评估数据捐赠请求中的哪些因素与参与者的接受和决定相关,我们进行了一项小插图实验,调查了出于研究目的捐赠各种数据类型(即来自 GPS、网页浏览、LinkedIn/Xing、Facebook 和 TikTok 的数据)的普遍接受度和个人意愿。这项预先注册的研究是在基于概率的德国互联网小组 (GIP) 中实施的,并收集了 n = 3821 名参与者的回复。结果显示,人们对数据捐赠请求的普遍可接受性的看法高于他们自己捐赠数据的意愿。关于不同的数据类型,受访者表示,与网页浏览和 Facebook 数据相比,他们更愿意捐赠他们的 LinkedIn/Xing、TikTok 和 GPS 数据。相比之下,有关捐赠数据是否会与其他研究人员共享以及数据安全性的信息不会影响对相应捐赠场景的响应。基于这些结果,我们讨论了对采用数据捐赠的研究的意义。
更新日期:2024-12-09
down
wechat
bug